Multi-Task Interaction Learning for Spatiospectral Image Super-Resolution

High spatial resolution and high spectral resolution images (HR-HSIs) are widely applied in geosciences, medical diagnosis, and beyond. However, how to get images with both high spatial resolution and high spectral resolution is still a problem to be solved. In this paper, we present a deep spatial-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 29., Seite 2950-2961
1. Verfasser: Ma, Qing (VerfasserIn)
Weitere Verfasser: Jiang, Junjun, Liu, Xianming, Ma, Jiayi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338795278
003 DE-627
005 20231226001455.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3161834  |2 doi 
028 5 2 |a pubmed24n1129.xml 
035 |a (DE-627)NLM338795278 
035 |a (NLM)35349442 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Qing  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Interaction Learning for Spatiospectral Image Super-Resolution 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a High spatial resolution and high spectral resolution images (HR-HSIs) are widely applied in geosciences, medical diagnosis, and beyond. However, how to get images with both high spatial resolution and high spectral resolution is still a problem to be solved. In this paper, we present a deep spatial-spectral feature interaction network (SSFIN) for reconstructing an HR-HSI from a low-resolution multispectral image (LR-MSI), e.g., RGB image. In particular, we introduce two auxiliary tasks, i.e., spatial super-resolution (SR) and spectral SR to help the network recover the HR-HSI better. Since higher spatial resolution can provide more detailed information about image texture and structure, and richer spectrum can provide more attribute information, we propose a spatial-spectral feature interaction block (SSFIB) to make the spatial SR task and the spectral SR task benefit each other. Therefore, we can make full use of the rich spatial and spectral information extracted from the spatial SR task and spectral SR task, respectively. Moreover, we use a weight decay strategy (for the spatial and spectral SR tasks) to train the SSFIN, so that the model can gradually shift attention from the auxiliary tasks to the primary task. Both quantitative and visual results on three widely used HSI datasets demonstrate that the proposed method achieves a considerable gain compared to other state-of-the-art methods. Source code is available at https://github.com/junjun-jiang/SSFIN 
650 4 |a Journal Article 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 29., Seite 2950-2961  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:29  |g pages:2950-2961 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3161834  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 29  |h 2950-2961