Old Photo Restoration via Deep Latent Space Translation

We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 15. Feb., Seite 2071-2087
1. Verfasser: Wan, Ziyu (VerfasserIn)
Weitere Verfasser: Zhang, Bo, Chen, Dong, Zhang, Pan, Wen, Fang, Liao, Jing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338795146
003 DE-627
005 20231226001455.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3163183  |2 doi 
028 5 2 |a pubmed24n1129.xml 
035 |a (DE-627)NLM338795146 
035 |a (NLM)35349432 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Ziyu  |e verfasserin  |4 aut 
245 1 0 |a Old Photo Restoration via Deep Latent Space Translation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose to restore old photos that suffer from severe degradation through a deep learning approach. Unlike conventional restoration tasks that can be solved through supervised learning, the degradation in real photos is complex and the domain gap between synthetic images and real old photos makes the network fail to generalize. Therefore, we propose a novel triplet domain translation network by leveraging real photos along with massive synthetic image pairs. Specifically, we train two variational autoencoders (VAEs) to respectively transform old photos and clean photos into two latent spaces. And the translation between these two latent spaces is learned with synthetic paired data. This translation generalizes well to real photos because the domain gap is closed in the compact latent space. Besides, to address multiple degradations mixed in one old photo, we design a global branch with a partial nonlocal block targeting the structured defects, such as scratches and dust spots, and a local branch targeting the unstructured defects, such as noises and blurriness. We also extend the global branch with a more memory-efficient scheme, named multi-scale patch-based attention to processing high-resolution photos. Two branches are fused in the latent space, leading to improved capability to restore old photos from multiple defects. Furthermore, we apply another face refinement network to recover fine details of faces in the old photos, thus ultimately generating photos with enhanced perceptual quality. With comprehensive experiments, the proposed pipeline demonstrates superior performance over state-of-the-art methods as well as existing commercial tools in terms of visual quality for old photos restoration. Both code and models could be found at https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life 
650 4 |a Journal Article 
700 1 |a Zhang, Bo  |e verfasserin  |4 aut 
700 1 |a Chen, Dong  |e verfasserin  |4 aut 
700 1 |a Zhang, Pan  |e verfasserin  |4 aut 
700 1 |a Chen, Dong  |e verfasserin  |4 aut 
700 1 |a Wen, Fang  |e verfasserin  |4 aut 
700 1 |a Liao, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 15. Feb., Seite 2071-2087  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:15  |g month:02  |g pages:2071-2087 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3163183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 15  |c 02  |h 2071-2087