NPT-Loss : Demystifying Face Recognition Losses With Nearest Proxies Triplet

Face recognition (FR) using deep convolutional neural networks (DCNNs) has seen remarkable success in recent years. One key ingredient of DCNN-based FR is the design of a loss function that ensures discrimination between various identities. The state-of-the-art (SOTA) solutions utilise normalised So...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 28. Dez., Seite 15249-15259
1. Verfasser: Khalid, Syed Safwan (VerfasserIn)
Weitere Verfasser: Awais, Muhammad, Feng, Zhen-Hua, Chan, Chi-Ho, Farooq, Ammarah, Akbari, Ali, Kittler, Josef
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338746471
003 DE-627
005 20231226001350.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3162705  |2 doi 
028 5 2 |a pubmed24n1129.xml 
035 |a (DE-627)NLM338746471 
035 |a (NLM)35344485 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khalid, Syed Safwan  |e verfasserin  |4 aut 
245 1 0 |a NPT-Loss  |b Demystifying Face Recognition Losses With Nearest Proxies Triplet 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Face recognition (FR) using deep convolutional neural networks (DCNNs) has seen remarkable success in recent years. One key ingredient of DCNN-based FR is the design of a loss function that ensures discrimination between various identities. The state-of-the-art (SOTA) solutions utilise normalised Softmax loss with additive and/or multiplicative margins. Despite being popular and effective, these losses are justified only intuitively with little theoretical explanations. In this work, we show that under the LogSumExp (LSE) approximation, the SOTA Softmax losses become equivalent to a proxy-triplet loss that focuses on nearest-neighbour negative proxies only. This motivates us to propose a variant of the proxy-triplet loss, entitled Nearest Proxies Triplet (NPT) loss, which unlike SOTA solutions, converges for a wider range of hyper-parameters and offers flexibility in proxy selection and thus outperforms SOTA techniques. We generalise many SOTA losses into a single framework and give theoretical justifications for the assertion that minimising the proposed loss ensures a minimum separability between all identities. We also show that the proposed loss has an implicit mechanism of hard-sample mining. We conduct extensive experiments using various DCNN architectures on a number of FR benchmarks to demonstrate the efficacy of the proposed scheme over SOTA methods 
650 4 |a Journal Article 
700 1 |a Awais, Muhammad  |e verfasserin  |4 aut 
700 1 |a Feng, Zhen-Hua  |e verfasserin  |4 aut 
700 1 |a Chan, Chi-Ho  |e verfasserin  |4 aut 
700 1 |a Farooq, Ammarah  |e verfasserin  |4 aut 
700 1 |a Akbari, Ali  |e verfasserin  |4 aut 
700 1 |a Kittler, Josef  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 28. Dez., Seite 15249-15259  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:28  |g month:12  |g pages:15249-15259 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3162705  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 28  |c 12  |h 15249-15259