Long Short-Term Relation Transformer With Global Gating for Video Captioning

Video captioning aims to generate a natural language sentence to describe the main content of a video. Since there are multiple objects in videos, taking full exploration of the spatial and temporal relationships among them is crucial for this task. The previous methods wrap the detected objects as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 24., Seite 2726-2738
1. Verfasser: Li, Liang (VerfasserIn)
Weitere Verfasser: Gao, Xingyu, Deng, Jincan, Tu, Yunbin, Zha, Zheng-Jun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM338547487
003 DE-627
005 20250303044558.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3158546  |2 doi 
028 5 2 |a pubmed25n1128.xml 
035 |a (DE-627)NLM338547487 
035 |a (NLM)35324439 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Liang  |e verfasserin  |4 aut 
245 1 0 |a Long Short-Term Relation Transformer With Global Gating for Video Captioning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video captioning aims to generate a natural language sentence to describe the main content of a video. Since there are multiple objects in videos, taking full exploration of the spatial and temporal relationships among them is crucial for this task. The previous methods wrap the detected objects as input sequences, and leverage vanilla self-attention or graph neural network to reason about visual relations. This cannot make full use of the spatial and temporal nature of a video, and suffers from the problems of redundant connections, over-smoothing, and relation ambiguity. In order to address the above problems, in this paper we construct a long short-term graph (LSTG) that simultaneously captures short-term spatial semantic relations and long-term transformation dependencies. Further, to perform relational reasoning over the LSTG, we design a global gated graph reasoning module (G3RM), which introduces a global gating based on global context to control information propagation between objects and alleviate relation ambiguity. Finally, by introducing G3RM into Transformer instead of self-attention, we propose the long short-term relation transformer (LSRT) to fully mine objects' relations for caption generation. Experiments on MSVD and MSR-VTT datasets show that the LSRT achieves superior performance compared with state-of-the-art methods. The visualization results indicate that our method alleviates problem of over-smoothing and strengthens the ability of relational reasoning 
650 4 |a Journal Article 
700 1 |a Gao, Xingyu  |e verfasserin  |4 aut 
700 1 |a Deng, Jincan  |e verfasserin  |4 aut 
700 1 |a Tu, Yunbin  |e verfasserin  |4 aut 
700 1 |a Zha, Zheng-Jun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 24., Seite 2726-2738  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:24  |g pages:2726-2738 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3158546  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 24  |h 2726-2738