Duality-Induced Regularizer for Semantic Matching Knowledge Graph Embeddings

Semantic matching models-which assume that entities with similar semantics have similar embeddings-have shown great power in knowledge graph embeddings (KGE). Many existing semantic matching models use inner products in embedding spaces to measure the plausibility of triples and quadruples in static...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 24. Feb., Seite 1652-1667
1. Verfasser: Wang, Jie (VerfasserIn)
Weitere Verfasser: Zhang, Zhanqiu, Shi, Zhihao, Cai, Jianyu, Ji, Shuiwang, Wu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338547428
003 DE-627
005 20231226000922.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3161804  |2 doi 
028 5 2 |a pubmed24n1128.xml 
035 |a (DE-627)NLM338547428 
035 |a (NLM)35324433 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jie  |e verfasserin  |4 aut 
245 1 0 |a Duality-Induced Regularizer for Semantic Matching Knowledge Graph Embeddings 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Semantic matching models-which assume that entities with similar semantics have similar embeddings-have shown great power in knowledge graph embeddings (KGE). Many existing semantic matching models use inner products in embedding spaces to measure the plausibility of triples and quadruples in static and temporal knowledge graphs. However, vectors that have the same inner products with another vector can still be orthogonal to each other, which implies that entities with similar semantics may have dissimilar embeddings. This property of inner products significantly limits the performance of semantic matching models. To address this challenge, we propose a novel regularizer-namely, DUality-induced RegulArizer (DURA)-which effectively encourages the entities with similar semantics to have similar embeddings. The major novelty of DURA is based on the observation that, for an existing semantic matching KGE model (primal), there is often another distance based KGE model (dual) closely associated with it, which can be used as effective constraints for entity embeddings. Experiments demonstrate that DURA consistently and significantly improves the performance of state-of-the-art semantic matching models on both static and temporal knowledge graph benchmarks 
650 4 |a Journal Article 
700 1 |a Zhang, Zhanqiu  |e verfasserin  |4 aut 
700 1 |a Shi, Zhihao  |e verfasserin  |4 aut 
700 1 |a Cai, Jianyu  |e verfasserin  |4 aut 
700 1 |a Ji, Shuiwang  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 24. Feb., Seite 1652-1667  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:24  |g month:02  |g pages:1652-1667 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3161804  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 24  |c 02  |h 1652-1667