|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM338509445 |
003 |
DE-627 |
005 |
20231226000831.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.16173
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1128.xml
|
035 |
|
|
|a (DE-627)NLM338509445
|
035 |
|
|
|a (NLM)35320598
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Leyrer, Vinzent
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Long-term manipulation of mean climatic conditions alters drought effects on C- and N-cycling in an arable soil
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.05.2022
|
500 |
|
|
|a Date Revised 16.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
|
520 |
|
|
|a Climate is changing and predicted future scenarios include both changes in long-term mean climatic conditions and intensification of extreme events such as drought. Drought can have a major impact on soil functional processes; soil microorganisms, key to these processes, depend on water and temperature dynamics. Consequently, feedback mechanisms regarding microbially mediated carbon and nitrogen cycling in soils may be affected. There are indications that microbial exposure to increasingly unfavorable environmental conditions influences their stress responses. Here, the long-term field experiment Hohenheim Climate Change (HoCC) provided a research platform to explore how microbial exposure to long-term reduced water availability and soil warming modifies microbially driven soil processes, especially gas fluxes from soil, both during drought and after rewetting. The HoCC experiment is an agroecosystem in which the soil microbiome has been exposed to reduced annual mean precipitation and elevated temperature since 2008. Treatment levels were chosen based on a realistic future climate scenario. In June 2019, we exposed this system to a drought period of four weeks. We found that even after 11 years, warming remained a driver of CO2 and N2 O fluxes across the different soil moisture conditions in our drought experiment. Importantly, however, microbial exposure to long-term reduced water availability limited the stimulatory effect of warming on gas fluxes during drought and after rewetting. Our results were neither related to a legacy effect within overall microbial biomass carbon levels nor a shift towards enhanced fungal abundance. We found no indications that extracellular enzyme activities or microbial substrate availability explained the gas flux dynamics observed in our drought experiment. Our study indicates that soil warming promotes gaseous C and N loss even under extreme drought conditions. We suspect, however, that a shift in microbial function following long-term water limitation can hamper the enhancing effect of warming on soil gas fluxes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a climate change
|
650 |
|
4 |
|a drought stress
|
650 |
|
4 |
|a legacy effect
|
650 |
|
4 |
|a soil gas fluxes
|
650 |
|
4 |
|a soil microorganisms
|
650 |
|
4 |
|a temperate agroecosystem
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Patulla, Marina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hartung, Jens
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Marhan, Sven
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Poll, Christian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 28(2022), 12 vom: 23. Juni, Seite 3974-3990
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2022
|g number:12
|g day:23
|g month:06
|g pages:3974-3990
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.16173
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2022
|e 12
|b 23
|c 06
|h 3974-3990
|