Guided Filter Network for Semantic Image Segmentation

The existing publicly available datasets with pixel-level labels contain limited categories, and it is difficult to generalize to the real world containing thousands of categories. In this paper, we propose an approach to generate object masks with detailed pixel-level structures/boundaries automati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 02., Seite 2695-2709
1. Verfasser: Zhang, Xiang (VerfasserIn)
Weitere Verfasser: Zhao, Wanqing, Zhang, Wei, Peng, Jinye, Fan, Jianping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338504540
003 DE-627
005 20231226000824.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3160399  |2 doi 
028 5 2 |a pubmed24n1128.xml 
035 |a (DE-627)NLM338504540 
035 |a (NLM)35320103 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Xiang  |e verfasserin  |4 aut 
245 1 0 |a Guided Filter Network for Semantic Image Segmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The existing publicly available datasets with pixel-level labels contain limited categories, and it is difficult to generalize to the real world containing thousands of categories. In this paper, we propose an approach to generate object masks with detailed pixel-level structures/boundaries automatically to enable semantic image segmentation of thousands of targets in the real world without manually labelling. A Guided Filter Network (GFN) is first developed to learn the segmentation knowledge from an existed dataset, and such GFN then transfers the learned segmentation knowledge to generate initial coarse object masks for the target images. These coarse object masks are treated as pseudo labels to self-optimize the GFN iteratively in the target images. Our experiments on six image sets have demonstrated that our proposed approach can generate object masks with detailed pixel-level structures/boundaries, whose quality is comparable to the manually-labelled ones. Our proposed approach also achieves better performance on semantic image segmentation than most existing weakly-supervised, semi-supervised, and domain adaptation approaches under the same experimental conditions 
650 4 |a Journal Article 
700 1 |a Zhao, Wanqing  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Peng, Jinye  |e verfasserin  |4 aut 
700 1 |a Fan, Jianping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 02., Seite 2695-2709  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:02  |g pages:2695-2709 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3160399  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 02  |h 2695-2709