Learning Deep Binary Descriptors via Bitwise Interaction Mining

In this paper, we propose a GraphBit method to learn unsupervised deep binary descriptors for efficient image representation. Conventional binary representation learning methods directly quantize each element according to the threshold without considering the quantization ambiguousness. The elements...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 02. Feb., Seite 1919-1933
1. Verfasser: Wang, Ziwei (VerfasserIn)
Weitere Verfasser: Xiao, Han, Duan, Yueqi, Zhou, Jie, Lu, Jiwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM338504370
003 DE-627
005 20250303044236.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3161600  |2 doi 
028 5 2 |a pubmed25n1128.xml 
035 |a (DE-627)NLM338504370 
035 |a (NLM)35320086 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Ziwei  |e verfasserin  |4 aut 
245 1 0 |a Learning Deep Binary Descriptors via Bitwise Interaction Mining 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a GraphBit method to learn unsupervised deep binary descriptors for efficient image representation. Conventional binary representation learning methods directly quantize each element according to the threshold without considering the quantization ambiguousness. The elements near the boundary dubbed as "ambiguous bits" fail to collect effective information for reliable binarization and are sensitive to noise that causes reversed bits. We argue that there are implicit inner relationships among bits in binary descriptors called bitwise interaction, where the related bits can provide extra instruction as prior knowledge for ambiguousness reduction. Specifically, we design a deep reinforcement learning model to learn the structure of the graph for bitwise interaction mining, and the uncertainty of binary codes is reduced by maximizing the mutual information with input and related bits. Consequently, the ambiguous bits receive additional instruction from the graph for reliable binarization. Moreover, we further present a differentiable search method (GraphBit+) that mines the bitwise interaction in continuous space, so that the heavy search cost caused by the training difficulties in reinforcement learning is significantly reduced. Since the GraphBit and GraphBit+ methods learn fixed bitwise interaction which is suboptimal for various input, the inaccurate instruction from the fixed bitwise interaction cannot effectively decrease the ambiguousness of binary descriptors. To address this, we further propose the unsupervised binary descriptor learning method via dynamic bitwise interaction mining (D-GraphBit), where a graph convolutional network called GraphMiner reasons the optimal bitwise interaction for each input sample. Extensive experimental results on the CIFAR-10, NUS-WIDE, ImageNet-100, Brown and HPatches datasets demonstrate the efficiency and effectiveness of the proposed GraphBit, GraphBit+ and D-GraphBit 
650 4 |a Journal Article 
700 1 |a Xiao, Han  |e verfasserin  |4 aut 
700 1 |a Duan, Yueqi  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 02. Feb., Seite 1919-1933  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:02  |g month:02  |g pages:1919-1933 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3161600  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 02  |c 02  |h 1919-1933