A Deep-Learning-Assisted On-Mask Sensor Network for Adaptive Respiratory Monitoring

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 24 vom: 21. Juni, Seite e2200252
1. Verfasser: Fang, Yunsheng (VerfasserIn)
Weitere Verfasser: Xu, Jing, Xiao, Xiao, Zou, Yongjiu, Zhao, Xun, Zhou, Yihao, Chen, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Rayleigh instabilities deep learning on-mask sensor networks personalized healthcare respiratory monitoring
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Wearable respiratory monitoring is a fast, non-invasive, and convenient approach to provide early recognition of human health abnormalities like restrictive and obstructive lung diseases. Here, a computational fluid dynamics assisted on-mask sensor network is reported, which can overcome different user facial contours and environmental interferences to collect highly accurate respiratory signals. Inspired by cribellate silk, Rayleigh-instability-induced spindle-knot fibers are knitted for the fabrication of permeable and moisture-proof textile triboelectric sensors that hold a decent signal-to-noise ratio of 51.2 dB, a response time of 0.28 s, and a sensitivity of 0.46 V kPa-1 . With the assistance of deep learning, the on-mask sensor network can realize the respiration pattern recognition with a classification accuracy up to 100%, showing great improvement over a single respiratory sensor. Additionally, a customized user-friendly cellphone application is developed to connect the processed respiratory signals for real-time data-driven diagnosis and one-click health data sharing with the clinicians. The deep-learning-assisted on-mask sensor network opens a new avenue for personalized respiration management in the era of the Internet of Things
Beschreibung:Date Completed 17.06.2022
Date Revised 17.06.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202200252