|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM338358110 |
| 003 |
DE-627 |
| 005 |
20250303043153.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
231226s2022 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202109547
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1127.xml
|
| 035 |
|
|
|a (DE-627)NLM338358110
|
| 035 |
|
|
|a (NLM)35305279
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Khan, Mohd A
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Nanostructured, Fluid-Bicontinuous Gels for Continuous-Flow Liquid-Liquid Extraction
|
| 264 |
|
1 |
|c 2022
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 06.05.2022
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
| 520 |
|
|
|a Fluid-bicontinuous gels are unique materials that allow two distinct fluids to interact through a percolating, rigid scaffold. Current restrictions for their use are the large fluid-channel sizes (>5 µm), limiting the fluid-fluid interaction surface-area, and the inability to flow liquids through the channels. In this work a scalable synthesis route of nanoparticle stabilized fluid-bicontinuous gels with channels sizes below 500 nm and specific surface areas of 2 m2 cm-3 is introduced. Moreover, it is demonstrated that liquids can be pumped through the fluid-bicontinuous gels via electroosmosis. The fast liquid flow in the fluid-bicontinuous gel facilitates their use for molecular separations in continuous-flow liquid-liquid extraction. Together with the high surface areas, liquid flow through fluid-bicontinuous gels enhances their potential as highly permeable porous materials with possible uses as microreaction media, fuel-cell components, and separation membranes
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a bijels
|
| 650 |
|
4 |
|a catalysis
|
| 650 |
|
4 |
|a electroosmosis
|
| 650 |
|
4 |
|a extraction
|
| 650 |
|
4 |
|a nanoparticles
|
| 700 |
1 |
|
|a Sprockel, Alessio J
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Macmillan, Katherine A
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Alting, Meyer T
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Kharal, Shankar P
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Boakye-Ansah, Stephen
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Haase, Martin F
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 18 vom: 19. Mai, Seite e2109547
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:18
|g day:19
|g month:05
|g pages:e2109547
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202109547
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 34
|j 2022
|e 18
|b 19
|c 05
|h e2109547
|