|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM338358021 |
003 |
DE-627 |
005 |
20231226000505.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202201895
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1127.xml
|
035 |
|
|
|a (DE-627)NLM338358021
|
035 |
|
|
|a (NLM)35305270
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Chunsheng
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Photoelectric Spiking Neuron for Visual Depth Perception
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.05.2022
|
500 |
|
|
|a Date Revised 23.05.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a The biological visual system encodes optical information into spikes and processes them by the neural network, which enables the perception with high throughput of visual processing with ultralow energy budget. This has inspired a wide spectrum of devices to imitate such neural process, while precise mimicking such procedure is still highly required. Here, a highly bio-realistic photoelectric spiking neuron for visual depth perception is presented. The firing spikes generated by the TaOX memristive spiking encoders have a biologically similar frequency range of 1-200 Hz and sub-micro watts power. Such spiking encoder is integrated with a photodetector and a network of neuromorphic transistors, for information collection and recognition tasks, respectively. The distance-dependent response and eye fatigue of biological visual systems have been mimicked based on such photoelectric spiking neuron. The simulated depth perception shows a recognition improvement by adapting to sights at different distances. The results can advance the technologies in bioinspired or robotic systems that may be endowed with depth perception and power efficiency at the same time
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a TaOX memristors
|
650 |
|
4 |
|a artificial visual systems
|
650 |
|
4 |
|a leaky integrate-and-fire neurons
|
650 |
|
4 |
|a photoelectric spiking neuron
|
700 |
1 |
|
|a He, Yongli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mao, Huiwu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xiangjing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Yixin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wan, Changjin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wan, Qing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 20 vom: 19. Mai, Seite e2201895
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:20
|g day:19
|g month:05
|g pages:e2201895
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202201895
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 20
|b 19
|c 05
|h e2201895
|