Self-Assembly of Nanocrystals into Ring-like Superstructures : When Shape, Size, and Material Do Not Matter

This manuscript describes a universal method for the spontaneous self-assembly of nanostructures ranging from 2-4 nm spherical particles to ∼440 nm long anisotropic nanorods into ring-like superstructures. The nanostructures composed of Au, Pt, and Pd as surface materials were synthesized in an aque...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 12 vom: 29. März, Seite 3896-3906
1. Verfasser: Khanal, Bishnu P (VerfasserIn)
Weitere Verfasser: Zubarev, Eugene R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This manuscript describes a universal method for the spontaneous self-assembly of nanostructures ranging from 2-4 nm spherical particles to ∼440 nm long anisotropic nanorods into ring-like superstructures. The nanostructures composed of Au, Pt, and Pd as surface materials were synthesized in an aqueous cetyltrimethyl ammonium bromide (CTAB) solution. The ligand exchange technique with 4-mercaptophenol was applied to replace CTAB from the surface of nanostructures with a functional thiol. The esterification reaction was carried out to covalently attach carboxy-terminated long-chain polystyrene (PS) molecules to the surface of nanostructures. The high grafting density of PS chains around nanocrystals made them highly soluble in a wide range of organic solvents. When a drop of nanostructure solution in a volatile nonpolar solvent was dried on a solid surface, the nanostructures spontaneously arranged themselves in the form of ring-like assemblies. The condensation of microscopic water droplets from the atmosphere on the surface of an evaporating solvent creates templates for the self-assembly of nanostructures into rings. We demonstrate that this self-assembly method is highly universal and can be extended to various nanostructures regardless of their shapes, sizes, and surface materials
Beschreibung:Date Revised 29.03.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c00153