A mixed integer linear programming model and a basic variable neighbourhood search algorithm for the repatriation scheduling problem

© 2022 Elsevier Ltd. All rights reserved.

Détails bibliographiques
Publié dans:Expert systems with applications. - 1999. - 198(2022) vom: 15. Juli, Seite 116728
Auteur principal: Al-Shihabi, Sameh (Auteur)
Autres auteurs: Mladenović, Nenad
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Expert systems with applications
Sujets:Journal Article Covid-19 Optimization Repatriation Scheduling Variable neighbourhood search
LEADER 01000caa a22002652c 4500
001 NLM338263721
003 DE-627
005 20250303042423.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.116728  |2 doi 
028 5 2 |a pubmed25n1127.xml 
035 |a (DE-627)NLM338263721 
035 |a (NLM)35295716 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Al-Shihabi, Sameh  |e verfasserin  |4 aut 
245 1 2 |a A mixed integer linear programming model and a basic variable neighbourhood search algorithm for the repatriation scheduling problem 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a Commercial flights nearly halted due to the COVID-19 pandemic in the second quarter of 2020. Consequently, several countries have had to schedule repatriation flights to return their citizens stranded in other countries. Flight routes and schedules are known in normal circumstances, and passengers buy seats on these flights; however, the reverse steps happen in repatriation. Passengers express their need to travel, and flights are scheduled to satisfy their requests. The problem behind this flight schedule can be called the repatriation scheduling problem (RSP), in which we need to repatriate citizens from different countries. The objective of the RSP is to return the most vulnerable citizens first. The capacity of available airplanes and quarantine locations limit the number of repatriated citizens. To address this problem, we have developed a mixed-integer linear program (MILP) to model the RSP. Moreover, we suggest a basic variable neighbourhood search (BVNS) algorithm to solve the problem. We test the BVNS algorithm by creating and solving a set of 108 RSP instances and then comparing the BVNS solutions with the exact ones. Despite allocating only 20 s to run the BVNS algorithm compared to eight hours for a commercial exact solver's branch and bound algorithm, the BVNS algorithm could find better results than the lower bounds for 62 instances and similar values for 17 instances 
650 4 |a Journal Article 
650 4 |a Covid-19 
650 4 |a Optimization 
650 4 |a Repatriation 
650 4 |a Scheduling 
650 4 |a Variable neighbourhood search 
700 1 |a Mladenović, Nenad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 198(2022) vom: 15. Juli, Seite 116728  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnas 
773 1 8 |g volume:198  |g year:2022  |g day:15  |g month:07  |g pages:116728 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.116728  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 198  |j 2022  |b 15  |c 07  |h 116728