SphereFace Revived : Unifying Hyperspherical Face Recognition
This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end, hyperspherical face recognition, as a promising...
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 31. Feb., Seite 2458-2474 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2023
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
| Sujets: | Journal Article |
| Résumé: | This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end, hyperspherical face recognition, as a promising line of research, has attracted increasing attention and gradually become a major focus in face recognition research. As one of the earliest works in hyperspherical face recognition, SphereFace explicitly proposed to learn face embeddings with large inter-class angular margin. However, SphereFace still suffers from severe training instability which limits its application in practice. In order to address this problem, we introduce a unified framework to understand large angular margin in hyperspherical face recognition. Under this framework, we extend the study of SphereFace and propose an improved variant with substantially better training stability - SphereFace-R. Specifically, we propose two novel ways to implement the multiplicative margin, and study SphereFace-R under three different feature normalization schemes (no feature normalization, hard feature normalization and soft feature normalization). We also propose an implementation strategy - "characteristic gradient detachment" - to stabilize training. Extensive experiments on SphereFace-R show that it is consistently better than or competitive with state-of-the-art methods |
|---|---|
| Description: | Date Completed 06.04.2023 Date Revised 06.04.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1939-3539 |
| DOI: | 10.1109/TPAMI.2022.3159732 |