|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM338236961 |
003 |
DE-627 |
005 |
20231226000224.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202108573
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1127.xml
|
035 |
|
|
|a (DE-627)NLM338236961
|
035 |
|
|
|a (NLM)35293020
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhao, Kunpeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Structural Modularization of Cu2 Te Leading to High Thermoelectric Performance near the Mott-Ioffe-Regel Limit
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.05.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a To date, thermoelectric materials research stays focused on optimizing the material's band edge details and disfavors low mobility. Here, the paradigm is shifted from the band edge to the mobility edge, exploring high thermoelectricity near the border of band conduction and hopping. Through coalloying iodine and sulfur, the plain crystal structure is modularized of liquid-like thermoelectric material Cu2 Te with mosaic nanograins and the highly size mismatched S/Te sublattice that chemically quenches the Cu sublattice and drives the electronic states from itinerant to localized. A state-of-the-art figure of merit of 1.4 is obtained at 850 K for Cu2 (S0.4 I0.1 Te0.5 ); and remarkably, it is achieved near the Mott-Ioffe-Regel limit unlike mainstream thermoelectric materials that are band conductors. Broadly, pairing structural modularization with the high performance near the Mott-Ioffe-Regel limit paves an important new path towards the rational design of high-performance thermoelectric materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a copper telluride
|
650 |
|
4 |
|a structural modularization
|
650 |
|
4 |
|a the Mott-Ioffe-Regel limit
|
650 |
|
4 |
|a thermoelectric
|
700 |
1 |
|
|a Zhu, Chenxi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Hongyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Jingdan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Qingyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Tian-Ran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiu, Pengfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Fangfang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Lidong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Xun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 19 vom: 01. Mai, Seite e2108573
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:19
|g day:01
|g month:05
|g pages:e2108573
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202108573
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 19
|b 01
|c 05
|h e2108573
|