PMP-Net++ : Point Cloud Completion by Transformer-Enhanced Multi-Step Point Moving Paths

Point cloud completion concerns to predict missing part for incomplete 3D shapes. A common strategy is to generate complete shape according to incomplete input. However, unordered nature of point clouds will degrade generation of high-quality 3D shapes, as detailed topology and structure of unordere...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 15. Jan., Seite 852-867
1. Verfasser: Wen, Xin (VerfasserIn)
Weitere Verfasser: Xiang, Peng, Han, Zhizhong, Cao, Yan-Pei, Wan, Pengfei, Zheng, Wen, Liu, Yu-Shen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338208755
003 DE-627
005 20231226000145.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3159003  |2 doi 
028 5 2 |a pubmed24n1127.xml 
035 |a (DE-627)NLM338208755 
035 |a (NLM)35290184 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Xin  |e verfasserin  |4 aut 
245 1 0 |a PMP-Net++  |b Point Cloud Completion by Transformer-Enhanced Multi-Step Point Moving Paths 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point cloud completion concerns to predict missing part for incomplete 3D shapes. A common strategy is to generate complete shape according to incomplete input. However, unordered nature of point clouds will degrade generation of high-quality 3D shapes, as detailed topology and structure of unordered points are hard to be captured during the generative process using an extracted latent code. We address this problem by formulating completion as point cloud deformation process. Specifically, we design a novel neural network, named PMP-Net++, to mimic behavior of an earth mover. It moves each point of incomplete input to obtain a complete point cloud, where total distance of point moving paths (PMPs) should be the shortest. Therefore, PMP-Net++ predicts unique PMP for each point according to constraint of point moving distances. The network learns a strict and unique correspondence on point-level, and thus improves quality of predicted complete shape. Moreover, since moving points heavily relies on per-point features learned by network, we further introduce a transformer-enhanced representation learning network, which significantly improves completion performance of PMP-Net++. We conduct comprehensive experiments in shape completion, and further explore application on point cloud up-sampling, which demonstrate non-trivial improvement of PMP-Net++ over state-of-the-art point cloud completion/up-sampling methods 
650 4 |a Journal Article 
700 1 |a Xiang, Peng  |e verfasserin  |4 aut 
700 1 |a Han, Zhizhong  |e verfasserin  |4 aut 
700 1 |a Cao, Yan-Pei  |e verfasserin  |4 aut 
700 1 |a Wan, Pengfei  |e verfasserin  |4 aut 
700 1 |a Zheng, Wen  |e verfasserin  |4 aut 
700 1 |a Liu, Yu-Shen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 15. Jan., Seite 852-867  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:15  |g month:01  |g pages:852-867 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3159003  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 15  |c 01  |h 852-867