Recent progress in materials and architectures for capacitive deionization : A comprehensive review

© 2022 Water Environment Federation.

Détails bibliographiques
Publié dans:Water environment research : a research publication of the Water Environment Federation. - 1998. - 94(2022), 3 vom: 11. März, Seite e10696
Auteur principal: Datar, Shreerang D (Auteur)
Autres auteurs: Mane, Rupali, Jha, Neetu
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Water environment research : a research publication of the Water Environment Federation
Sujets:Journal Article Review capacitive deionization electrosorption electrosorption metrics faradaic materials radioactive material Water 059QF0KO0R Sodium Chloride plus... 451W47IQ8X Carbon 7440-44-0
LEADER 01000caa a22002652c 4500
001 NLM338201750
003 DE-627
005 20250303040737.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10696  |2 doi 
028 5 2 |a pubmed25n1127.xml 
035 |a (DE-627)NLM338201750 
035 |a (NLM)35289462 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Datar, Shreerang D  |e verfasserin  |4 aut 
245 1 0 |a Recent progress in materials and architectures for capacitive deionization  |b A comprehensive review 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.03.2022 
500 |a Date Revised 16.03.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2022 Water Environment Federation. 
520 |a Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a capacitive deionization 
650 4 |a electrosorption 
650 4 |a electrosorption metrics 
650 4 |a faradaic materials 
650 4 |a radioactive material 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Mane, Rupali  |e verfasserin  |4 aut 
700 1 |a Jha, Neetu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 94(2022), 3 vom: 11. März, Seite e10696  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnas 
773 1 8 |g volume:94  |g year:2022  |g number:3  |g day:11  |g month:03  |g pages:e10696 
856 4 0 |u http://dx.doi.org/10.1002/wer.10696  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 94  |j 2022  |e 3  |b 11  |c 03  |h e10696