Multi-Modal Remote Sensing Image Matching Considering Co-Occurrence Filter

Traditional image feature matching methods cannot obtain satisfactory results for multi-modal remote sensing images (MRSIs) in most cases because different imaging mechanisms bring significant nonlinear radiation distortion differences (NRD) and complicated geometric distortion. The key to MRSI matc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 14., Seite 2584-2597
1. Verfasser: Yao, Yongxiang (VerfasserIn)
Weitere Verfasser: Zhang, Yongjun, Wan, Yi, Liu, Xinyi, Yan, Xiaohu, Li, Jiayuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338170146
003 DE-627
005 20231226000053.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3157450  |2 doi 
028 5 2 |a pubmed24n1127.xml 
035 |a (DE-627)NLM338170146 
035 |a (NLM)35286258 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao, Yongxiang  |e verfasserin  |4 aut 
245 1 0 |a Multi-Modal Remote Sensing Image Matching Considering Co-Occurrence Filter 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Traditional image feature matching methods cannot obtain satisfactory results for multi-modal remote sensing images (MRSIs) in most cases because different imaging mechanisms bring significant nonlinear radiation distortion differences (NRD) and complicated geometric distortion. The key to MRSI matching is trying to weakening or eliminating the NRD and extract more edge features. This paper introduces a new robust MRSI matching method based on co-occurrence filter (CoF) space matching (CoFSM). Our algorithm has three steps: (1) a new co-occurrence scale space based on CoF is constructed, and the feature points in the new scale space are extracted by the optimized image gradient; (2) the gradient location and orientation histogram algorithm is used to construct a 152-dimensional log-polar descriptor, which makes the multi-modal image description more robust; and (3) a position-optimized Euclidean distance function is established, which is used to calculate the displacement error of the feature points in the horizontal and vertical directions to optimize the matching distance function. The optimization results then are rematched, and the outliers are eliminated using a fast sample consensus algorithm. We performed comparison experiments on our CoFSM method with the scale-invariant feature transform (SIFT), upright-SIFT, PSO-SIFT, and radiation-variation insensitive feature transform (RIFT) methods using a multi-modal image dataset. The algorithms of each method were comprehensively evaluated both qualitatively and quantitatively. Our experimental results show that our proposed CoFSM method can obtain satisfactory results both in the number of corresponding points and the accuracy of its root mean square error. The average number of obtained matches is namely 489.52 of CoFSM, and 412.52 of RIFT. As mentioned earlier, the matching effect of the proposed method was significantly greater than the three state-of-art methods. Our proposed CoFSM method achieved good effectiveness and robustness. Executable programs of CoFSM and MRSI datasets are published: https://skyearth.org/publication/project/CoFSM/ 
650 4 |a Journal Article 
700 1 |a Zhang, Yongjun  |e verfasserin  |4 aut 
700 1 |a Wan, Yi  |e verfasserin  |4 aut 
700 1 |a Liu, Xinyi  |e verfasserin  |4 aut 
700 1 |a Yan, Xiaohu  |e verfasserin  |4 aut 
700 1 |a Li, Jiayuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 14., Seite 2584-2597  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:14  |g pages:2584-2597 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3157450  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 14  |h 2584-2597