TSGB : Target-Selective Gradient Backprop for Probing CNN Visual Saliency

The explanation for deep neural networks has drawn extensive attention in the deep learning community over the past few years. In this work, we study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks. Compared to iteration based saliency methods, single backw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 2529-2540
1. Verfasser: Cheng, Lin (VerfasserIn)
Weitere Verfasser: Fang, Pengfei, Liang, Yanjie, Zhang, Liao, Shen, Chunhua, Wang, Hanzi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338066330
003 DE-627
005 20231225235830.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3157149  |2 doi 
028 5 2 |a pubmed24n1126.xml 
035 |a (DE-627)NLM338066330 
035 |a (NLM)35275820 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Lin  |e verfasserin  |4 aut 
245 1 0 |a TSGB  |b Target-Selective Gradient Backprop for Probing CNN Visual Saliency 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.03.2022 
500 |a Date Revised 23.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The explanation for deep neural networks has drawn extensive attention in the deep learning community over the past few years. In this work, we study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks. Compared to iteration based saliency methods, single backward pass based saliency methods benefit from faster speed, and they are widely used in downstream visual tasks. Thus, we focus on single backward pass based methods. However, existing methods in this category struggle to successfully produce fine-grained saliency maps concentrating on specific target classes. That said, producing faithful saliency maps satisfying both target-selectiveness and fine-grainedness using a single backward pass is a challenging problem in the field. To mitigate this problem, we revisit the gradient flow inside the network, and find that the entangled semantics and original weights may disturb the propagation of target-relevant saliency. Inspired by those observations, we propose a novel visual saliency method, termed Target-Selective Gradient Backprop (TSGB), which leverages rectification operations to effectively emphasize target classes and further efficiently propagate the saliency to the image space, thereby generating target-selective and fine-grained saliency maps. The proposed TSGB consists of two components, namely, TSGB-Conv and TSGB-FC, which rectify the gradients for convolutional layers and fully-connected layers, respectively. Extensive qualitative and quantitative experiments on the ImageNet and Pascal VOC datasets show that the proposed method achieves more accurate and reliable results than the other competitive methods. Code is available at https://github.com/123fxdx/CNNvisualizationTSGB 
650 4 |a Journal Article 
700 1 |a Fang, Pengfei  |e verfasserin  |4 aut 
700 1 |a Liang, Yanjie  |e verfasserin  |4 aut 
700 1 |a Zhang, Liao  |e verfasserin  |4 aut 
700 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
700 1 |a Wang, Hanzi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 2529-2540  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:2529-2540 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3157149  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 2529-2540