Few-Shot Domain Adaptation via Mixup Optimal Transport

Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 2518-2528
1. Verfasser: Xu, Bingrong (VerfasserIn)
Weitere Verfasser: Zeng, Zhigang, Lian, Cheng, Ding, Zhengming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM338066314
003 DE-627
005 20231225235830.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3157139  |2 doi 
028 5 2 |a pubmed24n1126.xml 
035 |a (DE-627)NLM338066314 
035 |a (NLM)35275818 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Bingrong  |e verfasserin  |4 aut 
245 1 0 |a Few-Shot Domain Adaptation via Mixup Optimal Transport 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised domain adaptation aims to learn a classification model for the target domain without any labeled samples by transferring the knowledge from the source domain with sufficient labeled samples. The source and the target domains usually share the same label space but are with different data distributions. In this paper, we consider a more difficult but insufficient-explored problem named as few-shot domain adaptation, where a classifier should generalize well to the target domain given only a small number of examples in the source domain. In such a problem, we recast the link between the source and target samples by a mixup optimal transport model. The mixup mechanism is integrated into optimal transport to perform the few-shot adaptation by learning the cross-domain alignment matrix and domain-invariant classifier simultaneously to augment the source distribution and align the two probability distributions. Moreover, spectral shrinkage regularization is deployed to improve the transferability and discriminability of the mixup optimal transport model by utilizing all singular eigenvectors. Experiments conducted on several domain adaptation tasks demonstrate the effectiveness of our proposed model dealing with the few-shot domain adaptation problem compared with state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Zeng, Zhigang  |e verfasserin  |4 aut 
700 1 |a Lian, Cheng  |e verfasserin  |4 aut 
700 1 |a Ding, Zhengming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 2518-2528  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:2518-2528 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3157139  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 2518-2528