Confined Growth of Silver-Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 19 vom: 15. Mai, Seite e2110607
1. Verfasser: Ma, Yangbo (VerfasserIn)
Weitere Verfasser: Yu, Jinli, Sun, Mingzi, Chen, Bo, Zhou, Xichen, Ye, Chenliang, Guan, Zhiqiang, Guo, Weihua, Wang, Gang, Lu, Shiyao, Xia, Dongsheng, Wang, Yunhao, He, Zhen, Zheng, Long, Yun, Qinbai, Wang, Liqiang, Zhou, Jingwen, Lu, Pengyi, Yin, Jinwen, Zhao, Yifei, Luo, Zhongbin, Zhai, Li, Liao, Lingwen, Zhu, Zonglong, Ye, Ruquan, Chen, Ye, Lu, Yang, Xi, Shibo, Huang, Bolong, Lee, Chun-Sing, Fan, Zhanxi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Janus nanostructures asymmetric growth carbon dioxide reduction reaction facets tandem catalysis
LEADER 01000naa a22002652 4500
001 NLM338062556
003 DE-627
005 20231225235825.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202110607  |2 doi 
028 5 2 |a pubmed24n1126.xml 
035 |a (DE-627)NLM338062556 
035 |a (NLM)35275439 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Yangbo  |e verfasserin  |4 aut 
245 1 0 |a Confined Growth of Silver-Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Electrocatalytic carbon dioxide reduction reaction (CO2 RR) holds significant potential to promote carbon neutrality. However, the selectivity toward multicarbon products in CO2 RR is still too low to meet practical applications. Here the authors report the delicate synthesis of three kinds of Ag-Cu Janus nanostructures with {100} facets (JNS-100) for highly selective tandem electrocatalytic reduction of CO2 to multicarbon products. By controlling the surfactant and reduction kinetics of Cu precursor, the confined growth of Cu with {100} facets on one of the six equal faces of Ag nanocubes is realized. Compared with Cu nanocubes, Ag65 -Cu35 JNS-100 demonstrates much superior selectivity for both ethylene and multicarbon products in CO2 RR at less negative potentials. Density functional theory calculations reveal that the compensating electronic structure and carbon monoxide spillover in Ag65 -Cu35 JNS-100 contribute to the enhanced CO2 RR performance. This study provides an effective strategy to design advanced tandem catalysts toward the extensive application of CO2 RR 
650 4 |a Journal Article 
650 4 |a Janus nanostructures 
650 4 |a asymmetric growth 
650 4 |a carbon dioxide reduction reaction 
650 4 |a facets 
650 4 |a tandem catalysis 
700 1 |a Yu, Jinli  |e verfasserin  |4 aut 
700 1 |a Sun, Mingzi  |e verfasserin  |4 aut 
700 1 |a Chen, Bo  |e verfasserin  |4 aut 
700 1 |a Zhou, Xichen  |e verfasserin  |4 aut 
700 1 |a Ye, Chenliang  |e verfasserin  |4 aut 
700 1 |a Guan, Zhiqiang  |e verfasserin  |4 aut 
700 1 |a Guo, Weihua  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
700 1 |a Lu, Shiyao  |e verfasserin  |4 aut 
700 1 |a Xia, Dongsheng  |e verfasserin  |4 aut 
700 1 |a Wang, Yunhao  |e verfasserin  |4 aut 
700 1 |a He, Zhen  |e verfasserin  |4 aut 
700 1 |a Zheng, Long  |e verfasserin  |4 aut 
700 1 |a Yun, Qinbai  |e verfasserin  |4 aut 
700 1 |a Wang, Liqiang  |e verfasserin  |4 aut 
700 1 |a Zhou, Jingwen  |e verfasserin  |4 aut 
700 1 |a Lu, Pengyi  |e verfasserin  |4 aut 
700 1 |a Yin, Jinwen  |e verfasserin  |4 aut 
700 1 |a Zhao, Yifei  |e verfasserin  |4 aut 
700 1 |a Luo, Zhongbin  |e verfasserin  |4 aut 
700 1 |a Zhai, Li  |e verfasserin  |4 aut 
700 1 |a Liao, Lingwen  |e verfasserin  |4 aut 
700 1 |a Zhu, Zonglong  |e verfasserin  |4 aut 
700 1 |a Ye, Ruquan  |e verfasserin  |4 aut 
700 1 |a Chen, Ye  |e verfasserin  |4 aut 
700 1 |a Lu, Yang  |e verfasserin  |4 aut 
700 1 |a Xi, Shibo  |e verfasserin  |4 aut 
700 1 |a Huang, Bolong  |e verfasserin  |4 aut 
700 1 |a Lee, Chun-Sing  |e verfasserin  |4 aut 
700 1 |a Fan, Zhanxi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 19 vom: 15. Mai, Seite e2110607  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:19  |g day:15  |g month:05  |g pages:e2110607 
856 4 0 |u http://dx.doi.org/10.1002/adma.202110607  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 19  |b 15  |c 05  |h e2110607