|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM337943184 |
003 |
DE-627 |
005 |
20231225235548.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.18077
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1126.xml
|
035 |
|
|
|a (DE-627)NLM337943184
|
035 |
|
|
|a (NLM)35263440
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Choury, Zineb
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tropical rainforest species have larger increases in temperature optima with warming than warm-temperate rainforest trees
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.04.2022
|
500 |
|
|
|a Date Revised 31.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
|
520 |
|
|
|a While trees can acclimate to warming, there is concern that tropical rainforest species may be less able to acclimate because they have adapted to a relatively stable thermal environment. Here we tested whether the physiological adjustments to warming differed among Australian tropical, subtropical and warm-temperate rainforest trees. Photosynthesis and respiration temperature responses were quantified in six Australian rainforest seedlings of tropical, subtropical and warm-temperate climates grown across four growth temperatures in a glasshouse. Temperature-response models were fitted to identify mechanisms underpinning the response to warming. Tropical and subtropical species had higher temperature optima for photosynthesis (ToptA ) than temperate species. There was acclimation of ToptA to warmer growth temperatures. The rate of acclimation (0.35-0.78°C °C-1 ) was higher in tropical and subtropical than in warm-temperate trees and attributed to differences in underlying biochemical parameters, particularly increased temperature optima of Vcmax25 and Jmax25 . The temperature sensitivity of respiration (Q10 ) was 24% lower in tropical and subtropical compared with warm-temperate species. Overall, tropical and subtropical species had a similar capacity to acclimate to changes in growth temperature as warm-temperate species, despite being grown at higher temperatures. Quantifying the physiological acclimation in rainforests can improve accuracy of future climate predictions and assess their potential vulnerability to warming
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a maximum carboxylation rate Vcmax25
|
650 |
|
4 |
|a maximum electron transport Jmax25
|
650 |
|
4 |
|a photosynthesis
|
650 |
|
4 |
|a rainforest
|
650 |
|
4 |
|a respiration
|
650 |
|
4 |
|a temperature
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
700 |
1 |
|
|a Wujeska-Klause, Agnieszka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bourne, Aimee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bown, Nikki P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tjoelker, Mark G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Medlyn, Belinda E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Crous, Kristine Y
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 234(2022), 4 vom: 27. Mai, Seite 1220-1236
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:234
|g year:2022
|g number:4
|g day:27
|g month:05
|g pages:1220-1236
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.18077
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 234
|j 2022
|e 4
|b 27
|c 05
|h 1220-1236
|