Ecotoxicity and fate of silver nanomaterial in an outdoor lysimeter study after twofold application by sewage sludge

© 2022. The Author(s).

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 31(2022), 3 vom: 09. Apr., Seite 524-535
1. Verfasser: Hoppe, Martin (VerfasserIn)
Weitere Verfasser: Köser, Jan, Hund-Rinke, Kerstin, Schlich, Karsten
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Ammonium oxidizing bacteria Long-term experiment Plant uptake Silver nanomaterial Silver nitrate Soil Fertilizers Sewage Soil Pollutants
Beschreibung
Zusammenfassung:© 2022. The Author(s).
The increasing use of antibacterial silver nanomaterials (AgNM) in consumer products leads to their release into sewers. High amounts of AgNM become retained in sewage sludge, which causes their accumulation in agricultural soils when sewage sludge is applied as fertilizer. This increase in AgNM arouses concerns about toxicity to soil organisms and transfer within trophic levels. Long-term field studies simulating the sewage sludge pathway to soils are sparse, and the effects of a second sewage sludge application are unknown. In this perennial field lysimeter study, a twofold application of AgNM (NM-300K, 2 + 3 mg AgNM/kg dry matter soil (DMS)) and a onefold application of silver nitrate (AgNO3, 2 mg Ag/kg DMS) by sewage sludge to the uppermost 20 cm of the soil (Cambisol) were applied. The response of microorganisms to the applications was determined by measuring the inhibition of ammonium-oxidizing bacteria (AOB). Silver concentration in soil, leachates, and crops were measured after acid digestion by inductively coupled plasma mass spectrometry (ICP-MS). Almost no vertical Ag translocation to deeper soil layers and negligible Ag release to leachates suggest that soil is a large sink for AgNM and AgNO3. For AgNM, an increase in toxicity to AOB was shown after the second sewage sludge application. The application of AgNO3 resulted in long-term toxicity comparable to the toxicity of AgNM. Low root uptake from both AgNM- and AgNO3-spiked lysimeters to crops indicates their incomplete immobilization, which is why food chain uptake cannot completely be excluded. However, the root-shoot barrier for wheat (9.8 → 0.1 mg/kg) and skin body barrier for sugar beets (1.0 → 0.2 mg/kg) will further reduce the accumulation within trophic levels. Moreover, the applied AgNM concentration was above the predicted environmental concentration, which is why the root uptake might be negligible in agricultural practice
Beschreibung:Date Completed 24.03.2022
Date Revised 08.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-022-02529-3