Model-Agnostic Temporal Regularizer for Object Localization Using Motion Fields

Video analysis often requires locating and tracking target objects. In some applications, the localization system has access to the full video, which allows fine-grain motion information to be estimated. This paper proposes capturing this information through motion fields and using it to improve the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 08., Seite 2478-2487
1. Verfasser: Santiago, Carlos (VerfasserIn)
Weitere Verfasser: Medley, Daniela O, Marques, Jorge S, Nascimento, Jacinto C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33790037X
003 DE-627
005 20231225235450.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3155947  |2 doi 
028 5 2 |a pubmed24n1126.xml 
035 |a (DE-627)NLM33790037X 
035 |a (NLM)35259103 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Santiago, Carlos  |e verfasserin  |4 aut 
245 1 0 |a Model-Agnostic Temporal Regularizer for Object Localization Using Motion Fields 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video analysis often requires locating and tracking target objects. In some applications, the localization system has access to the full video, which allows fine-grain motion information to be estimated. This paper proposes capturing this information through motion fields and using it to improve the localization results. The learned motion fields act as a model-agnostic temporal regularizer that can be used with any localization system based on keypoints. Unlike optical flow-based strategies, our motion fields are estimated from the model domain, based on the trajectories described by the object keypoints. Therefore, they are not affected by poor imaging conditions. The benefits of the proposed strategy are shown on three applications: 1) segmentation of cardiac magnetic resonance; 2) facial model alignment; and 3) vehicle tracking. In each case, combining popular localization methods with the proposed regularizer leads to improvement in overall accuracies and reduces gross errors 
650 4 |a Journal Article 
700 1 |a Medley, Daniela O  |e verfasserin  |4 aut 
700 1 |a Marques, Jorge S  |e verfasserin  |4 aut 
700 1 |a Nascimento, Jacinto C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 08., Seite 2478-2487  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:08  |g pages:2478-2487 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3155947  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 08  |h 2478-2487