Progressive Joint Low-Light Enhancement and Noise Removal for Raw Images

Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture, resulting in low image quality. Most of the previous works on low-light imaging focus either only on a single task such as illumination adjustment, color enha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 08., Seite 2390-2404
1. Verfasser: Lu, Yucheng (VerfasserIn)
Weitere Verfasser: Jung, Seung-Won
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Low-light imaging on mobile devices is typically challenging due to insufficient incident light coming through the relatively small aperture, resulting in low image quality. Most of the previous works on low-light imaging focus either only on a single task such as illumination adjustment, color enhancement, or noise removal; or on a joint illumination adjustment and denoising task that heavily relies on short-long exposure image pairs from specific camera models. These approaches are less practical and generalizable in real-world settings where camera-specific joint enhancement and restoration is required. In this paper, we propose a low-light imaging framework that performs joint illumination adjustment, color enhancement, and denoising to tackle this problem. Considering the difficulty in model-specific data collection and the ultra-high definition of the captured images, we design two branches: a coefficient estimation branch and a joint operation branch. The coefficient estimation branch works in a low-resolution space and predicts the coefficients for enhancement via bilateral learning, whereas the joint operation branch works in a full-resolution space and progressively performs joint enhancement and denoising. In contrast to existing methods, our framework does not need to recollect massive data when adapted to another camera model, which significantly reduces the efforts required to fine-tune our approach for practical usage. Through extensive experiments, we demonstrate its great potential in real-world low-light imaging applications
Beschreibung:Date Revised 16.03.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3155948