VisImages : A Fine-Grained Expert-Annotated Visualization Dataset

Images in visualization publications contain rich information, e.g., novel visualization designs and implicit design patterns of visualizations. A systematic collection of these images can contribute to the community in many aspects, such as literature analysis and automated tasks for visualization....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 7 vom: 07. Juli, Seite 3298-3311
1. Verfasser: Deng, Dazhen (VerfasserIn)
Weitere Verfasser: Wu, Yihong, Shu, Xinhuan, Wu, Jiang, Fu, Siwei, Cui, Weiwei, Wu, Yingcai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Images in visualization publications contain rich information, e.g., novel visualization designs and implicit design patterns of visualizations. A systematic collection of these images can contribute to the community in many aspects, such as literature analysis and automated tasks for visualization. In this paper, we build and make public a dataset, VisImages, which collects 12,267 images with captions from 1,397 papers in IEEE InfoVis and VAST. Built upon a comprehensive visualization taxonomy, the dataset includes 35,096 visualizations and their bounding boxes in the images. We demonstrate the usefulness of VisImages through three use cases: 1) investigating the use of visualizations in the publications with VisImages Explorer, 2) training and benchmarking models for visualization classification, and 3) localizing visualizations in the visual analytics systems automatically
Beschreibung:Date Completed 28.05.2023
Date Revised 28.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2022.3155440