Matrix Completion via Non-Convex Relaxation and Adaptive Correlation Learning

The existing matrix completion methods focus on optimizing the relaxation of rank function such as nuclear norm, Schatten- p norm, etc. They usually need many iterations to converge. Moreover, only the low-rank property of matrices is utilized in most existing models and several methods that incorpo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 07. Feb., Seite 1981-1991
1. Verfasser: Li, Xuelong (VerfasserIn)
Weitere Verfasser: Zhang, Hongyuan, Zhang, Rui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM337860033
003 DE-627
005 20231225235357.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3157083  |2 doi 
028 5 2 |a pubmed24n1126.xml 
035 |a (DE-627)NLM337860033 
035 |a (NLM)35254976 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xuelong  |e verfasserin  |4 aut 
245 1 0 |a Matrix Completion via Non-Convex Relaxation and Adaptive Correlation Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The existing matrix completion methods focus on optimizing the relaxation of rank function such as nuclear norm, Schatten- p norm, etc. They usually need many iterations to converge. Moreover, only the low-rank property of matrices is utilized in most existing models and several methods that incorporate other knowledge are quite time-consuming in practice. To address these issues, we propose a novel non-convex surrogate that can be optimized by closed-form solutions, such that it empirically converges within dozens of iterations. Besides, the optimization is parameter-free and the convergence is proved. Compared with the relaxation of rank, the surrogate is motivated by optimizing an upper-bound of rank. We theoretically validate that it is equivalent to the existing matrix completion models. Besides the low-rank assumption, we intend to exploit the column-wise correlation for matrix completion, and thus an adaptive correlation learning, which is scaling-invariant, is developed. More importantly, after incorporating the correlation learning, the model can be still solved by closed-form solutions such that it still converges fast. Experiments show the effectiveness of the non-convex surrogate and adaptive correlation learning 
650 4 |a Journal Article 
700 1 |a Zhang, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 07. Feb., Seite 1981-1991  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:07  |g month:02  |g pages:1981-1991 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3157083  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 07  |c 02  |h 1981-1991