Recursive Least-Squares Estimator-Aided Online Learning for Visual Tracking

Tracking visual objects from a single initial exemplar in the testing phase has been broadly cast as a one-/few-shot problem, i.e., one-shot learning for initial adaptation and few-shot learning for online adaptation. The recent few-shot online adaptation methods incorporate the prior knowledge from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 02. März, Seite 1881-1897
1. Verfasser: Gao, Jin (VerfasserIn)
Weitere Verfasser: Lu, Yan, Qi, Xiaojuan, Kou, Yutong, Li, Bing, Li, Liang, Yu, Shan, Hu, Weiming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM337860009
003 DE-627
005 20250303031612.0
007 cr uuu---uuuuu
008 231225s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3156977  |2 doi 
028 5 2 |a pubmed25n1125.xml 
035 |a (DE-627)NLM337860009 
035 |a (NLM)35254973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Jin  |e verfasserin  |4 aut 
245 1 0 |a Recursive Least-Squares Estimator-Aided Online Learning for Visual Tracking 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Tracking visual objects from a single initial exemplar in the testing phase has been broadly cast as a one-/few-shot problem, i.e., one-shot learning for initial adaptation and few-shot learning for online adaptation. The recent few-shot online adaptation methods incorporate the prior knowledge from large amounts of annotated training data via complex meta-learning optimization in the offline phase. This helps the online deep trackers to achieve fast adaptation and reduce overfitting risk in tracking. In this paper, we propose a simple yet effective recursive least-squares estimator-aided online learning approach for few-shot online adaptation without requiring offline training. It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before, and thus the seen data can be safely removed from training. This also bears certain similarities to the emerging continual learning field in preventing catastrophic forgetting. This mechanism enables us to unveil the power of modern online deep trackers without incurring too much extra computational cost. We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP. The consistent improvements on several challenging tracking benchmarks demonstrate its effectiveness and efficiency 
650 4 |a Journal Article 
700 1 |a Lu, Yan  |e verfasserin  |4 aut 
700 1 |a Qi, Xiaojuan  |e verfasserin  |4 aut 
700 1 |a Kou, Yutong  |e verfasserin  |4 aut 
700 1 |a Li, Bing  |e verfasserin  |4 aut 
700 1 |a Li, Liang  |e verfasserin  |4 aut 
700 1 |a Yu, Shan  |e verfasserin  |4 aut 
700 1 |a Hu, Weiming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 3 vom: 02. März, Seite 1881-1897  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:3  |g day:02  |g month:03  |g pages:1881-1897 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3156977  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 3  |b 02  |c 03  |h 1881-1897