Single Image Super-Resolution Quality Assessment : A Real-World Dataset, Subjective Studies, and an Objective Metric

Numerous single image super-resolution (SISR) algorithms have been proposed during the past years to reconstruct a high-resolution (HR) image from its low-resolution (LR) observation. However, how to fairly compare the performance of different SISR algorithms/results remains a challenging problem. S...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 03., Seite 2279-2294
Auteur principal: Jiang, Qiuping (Auteur)
Autres auteurs: Liu, Zhentao, Gu, Ke, Shao, Feng, Zhang, Xinfeng, Liu, Hantao, Lin, Weisi
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM337707057
003 DE-627
005 20250303025327.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3154588  |2 doi 
028 5 2 |a pubmed25n1125.xml 
035 |a (DE-627)NLM337707057 
035 |a (NLM)35239481 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Qiuping  |e verfasserin  |4 aut 
245 1 0 |a Single Image Super-Resolution Quality Assessment  |b A Real-World Dataset, Subjective Studies, and an Objective Metric 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.03.2022 
500 |a Date Revised 17.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Numerous single image super-resolution (SISR) algorithms have been proposed during the past years to reconstruct a high-resolution (HR) image from its low-resolution (LR) observation. However, how to fairly compare the performance of different SISR algorithms/results remains a challenging problem. So far, the lack of comprehensive human subjective study on large-scale real-world SISR datasets and accurate objective SISR quality assessment metrics makes it unreliable to truly understand the performance of different SISR algorithms. We in this paper make efforts to tackle these two issues. Firstly, we construct a real-world SISR quality dataset (i.e., RealSRQ) and conduct human subjective studies to compare the performance of the representative SISR algorithms. Secondly, we propose a new objective metric, i.e., KLTSRQA, based on the Karhunen-Loéve Transform (KLT) to evaluate the quality of SISR images in a no-reference (NR) manner. Experiments on our constructed RealSRQ and the latest synthetic SISR quality dataset (i.e., QADS) have demonstrated the superiority of our proposed KLTSRQA metric, achieving higher consistency with human subjective scores than relevant existing NR image quality assessment (NR-IQA) metrics. The dataset and the code will be made available at https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA 
650 4 |a Journal Article 
700 1 |a Liu, Zhentao  |e verfasserin  |4 aut 
700 1 |a Gu, Ke  |e verfasserin  |4 aut 
700 1 |a Shao, Feng  |e verfasserin  |4 aut 
700 1 |a Zhang, Xinfeng  |e verfasserin  |4 aut 
700 1 |a Liu, Hantao  |e verfasserin  |4 aut 
700 1 |a Lin, Weisi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 03., Seite 2279-2294  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:03  |g pages:2279-2294 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3154588  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 03  |h 2279-2294