Alloying Co Species into Ordered and Interconnected Macroporous Carbon Polyhedra for Efficient Oxygen Reduction Reaction in Rechargeable Zinc-Air Batteries

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 17 vom: 02. Apr., Seite e2109605
1. Verfasser: Li, Wei (VerfasserIn)
Weitere Verfasser: Liu, Bo, Liu, Da, Guo, Peifang, Liu, Jing, Wang, Ruirui, Guo, Yanhui, Tu, Xin, Pan, Hongge, Sun, Dalin, Fang, Fang, Wu, Renbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article alloys mass transfer ordered macroporous-mesoporous-microporous carbon oxygen reduction reaction zinc-air batteries
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Engineering non-precious transition metal (TM)-based electrocatalysts to simultaneously achieve an optimal intrinsic activity, high density of active sites, and rapid mass transfer ability for the oxygen reduction reaction (ORR) remains a significant challenge. To address this challenge, a hybrid composite consisting of Fex Co alloy nanoparticles uniformly implanted into hierarchically ordered macro-/meso-/microporous N-doped carbon polyhedra (HOMNCP) is rationally designed. The combined results of experimental and theoretical investigations indicate that the alloying of Co enables a favorable electronic structure for the formation of the *OH intermediate, while the periodically trimodal-porous structured carbon matrix structure not only provides highly accessible channels for active site utilization but also dramatically facilitates mass transfer in the catalytic process. As expected, the Fe0.5 CoHOMNCP composite catalyst exhibits extraordinary ORR activity with a half-wave potential of 0.903 V (vs reversible hydrogen electrode), surpassing most Co-based catalysts reported to date. More remarkably, the use of the Fe0.5 Co@HOMNCP catalyst as the air electrode in a zinc-air battery results in superior open-circuit voltage and power density compared to a commercial Pt/C + IrO2 catalyst. The results of this study are expected to inspire the development of advanced TM-based catalysts for energy storage and conversion applications
Beschreibung:Date Revised 27.04.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202109605