Robust Multi-View Clustering With Incomplete Information

The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection and transmission, thus leading to the so-calle...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 31. Jan., Seite 1055-1069
1. Verfasser: Yang, Mouxing (VerfasserIn)
Weitere Verfasser: Li, Yunfan, Hu, Peng, Bai, Jinfeng, Lv, Jiancheng, Peng, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM337622574
003 DE-627
005 20231225234836.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3155499  |2 doi 
028 5 2 |a pubmed24n1125.xml 
035 |a (DE-627)NLM337622574 
035 |a (NLM)35230947 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Mouxing  |e verfasserin  |4 aut 
245 1 0 |a Robust Multi-View Clustering With Incomplete Information 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection and transmission, thus leading to the so-called Partially View-unaligned Problem (PVP) and Partially Sample-missing Problem (PSP). To overcome such incomplete information challenges, we propose a novel method, termed robuSt mUlti-view clusteRing with incomplEte information (SURE), which solves PVP and PSP under a unified framework. In brief, SURE is a novel contrastive learning paradigm which uses the available pairs as positives and randomly chooses some cross-view samples as negatives. To reduce the influence of the false negatives caused by random sampling, SURE is with a noise-robust contrastive loss that theoretically and empirically mitigates or even eliminates the influence of the false negatives. To the best of our knowledge, this could be the first successful attempt that simultaneously handles PVP and PSP using a unified solution. In addition, this could be one of the first studies on the noisy correspondence problem (i.e., the false negatives) which is a novel paradigm of noisy labels. Extensive experiments demonstrate the effectiveness and efficiency of SURE comparing with 10 state-of-the-art approaches on the multi-view clustering task 
650 4 |a Journal Article 
700 1 |a Li, Yunfan  |e verfasserin  |4 aut 
700 1 |a Hu, Peng  |e verfasserin  |4 aut 
700 1 |a Bai, Jinfeng  |e verfasserin  |4 aut 
700 1 |a Lv, Jiancheng  |e verfasserin  |4 aut 
700 1 |a Peng, Xi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 31. Jan., Seite 1055-1069  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:31  |g month:01  |g pages:1055-1069 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3155499  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 31  |c 01  |h 1055-1069