Critical In-Plane Density of Polyelectrolyte Brush for the Ordered Hydrogen-Bonded Structure of Incorporated Water

A polymer electrolyte brush is a reasonable platform to confine water molecules within a nanoscopic area to study their role in the function of interacting media because of their adjustable nanospace and charge by changing the in-plane density and side chains of the brush. Here, we demonstrate how t...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 10 vom: 15. März, Seite 3076-3081
Auteur principal: Yamazoe, Kosuke (Auteur)
Autres auteurs: Higaki, Yuji, Inutsuka, Yoshihiro, Miyawaki, Jun, Takahara, Atsushi, Harada, Yoshihisa
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:A polymer electrolyte brush is a reasonable platform to confine water molecules within a nanoscopic area to study their role in the function of interacting media because of their adjustable nanospace and charge by changing the in-plane density and side chains of the brush. Here, we demonstrate how the in-plane spacing of cationic polymer brush chains, poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMTAC), affects the hydrogen bond configuration of incorporated water using soft X-ray emission spectroscopy. At the critical in-plane density σ = 0.30 chains/nm2 of PMTAC, tetrahedrally coordinated water molecules started to melt into distorted or broken hydrogen-bonded configurations. Considering the charge on the quaternary ammonium cations, the electric field required to form a tetrahedrally coordinated hydrogen-bonded configuration was estimated as ∼500 kV cm-1 and is effective up to ∼1 nm from the surface of the polymer chain. These findings are useful for designing specific interface properties and the resultant surface function of polyelectrolyte-based materials
Description:Date Revised 15.03.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02895