Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method
© 2022 Wiley Periodicals LLC.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 43(2022), 10 vom: 15. Apr., Seite 704-716 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article condensed-phase ionic liquids fragment-based method generalized energy-based fragmentation approach ionic crystals spectra |
Zusammenfassung: | © 2022 Wiley Periodicals LLC. The generalized energy-based fragmentation (GEBF) approach is extended to facilitate ab initio investigations of structures, lattice energies, vibrational spectra and 1 H NMR chemical shifts of ionic crystals and condensed-phase ionic liquids (ILs) with the periodic boundary conditions (PBC). For selected periodic systems, our results demonstrate that the so-called PBC-GEBF approach can provide satisfactory descriptions on ground-state energies, structures, and vibrational spectra of ionic crystals and IL crystals. The PBC-GEBF approach is then applied to three realistic condensed phase systems. For three ionic crystals (LiCl, NaCl, and KCl), we apply the PBC-GEBF approach with MP2 theory as well as some popular DFT methods to investigate their crystal structures and lattice energies. Our calculations indicate that the crystal structures obtained with PBC-GEBF-MP2/6-311 + G** are very close to the corresponding X-ray structures, while PBC-GEBF-ωB97X-D/6-311 + G** provides satisfactory prediction for crystal structures and lattice energies. For two polymorphs of [n-C4 mim][Cl] crystals, we find that the PBC-GEBF approach at the M06-2X/6-311 + G** level can give a satisfactory descriptions on structures and Raman spectra of these two crystals. Furthermore, for [C2 mim][BF4 ] ILs, we demonstrate that their 1 H NMR chemical shifts can be estimated from averaging over 5 typical snapshots (extracted from MD simulations) with the PBC-GEBF approach at the B97-2/pcSseg-2 level. The calculated results account for the observed experimental data quite well. Therefore, we expect that the PBC-GEBF approach, combined with various quantum chemistry methods, will become an effective tool in predicting structures and properties of ionic crystals and condensed-phase ILs |
---|---|
Beschreibung: | Date Revised 21.03.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.26828 |