Identifying climate thresholds for dominant natural vegetation types at the global scale using machine learning : Average climate versus extremes

© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 11 vom: 24. Juni, Seite 3557-3579
1. Verfasser: Beigaitė, Rita (VerfasserIn)
Weitere Verfasser: Tang, Hui, Bryn, Anders, Skarpaas, Olav, Stordal, Frode, Bjerke, Jarle W, Žliobaitė, Indrė
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article DGVMs climate extremes climate thresholds decision trees machine learning vegetation distribution
LEADER 01000caa a22002652c 4500
001 NLM337436266
003 DE-627
005 20250303021344.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16110  |2 doi 
028 5 2 |a pubmed25n1124.xml 
035 |a (DE-627)NLM337436266 
035 |a (NLM)35212092 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Beigaitė, Rita  |e verfasserin  |4 aut 
245 1 0 |a Identifying climate thresholds for dominant natural vegetation types at the global scale using machine learning  |b Average climate versus extremes 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2022 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a The global distribution of vegetation is largely determined by climatic conditions and feeds back into the climate system. To predict future vegetation changes in response to climate change, it is crucial to identify and understand key patterns and processes that couple vegetation and climate. Dynamic global vegetation models (DGVMs) have been widely applied to describe the distribution of vegetation types and their future dynamics in response to climate change. As a process-based approach, it partly relies on hard-coded climate thresholds to constrain the distribution of vegetation. What thresholds to implement in DGVMs and how to replace them with more process-based descriptions remain among the major challenges. In this study, we employ machine learning using decision trees to extract large-scale relationships between the global distribution of vegetation and climatic characteristics from remotely sensed vegetation and climate data. We analyse how the dominant vegetation types are linked to climate extremes as compared to seasonally or annually averaged climatic conditions. The results show that climate extremes allow us to describe the distribution and eco-climatological space of the vegetation types more accurately than the averaged climate variables, especially those types which occupy small territories in a relatively homogeneous ecological space. Future predicted vegetation changes using both climate extremes and averaged climate variables are less prominent than that predicted by averaged climate variables and are in better agreement with those of DGVMs, further indicating the importance of climate extremes in determining geographic distributions of different vegetation types. We found that the temperature thresholds for vegetation types (e.g. grass and open shrubland) in cold environments vary with moisture conditions. The coldest daily maximum temperature (extreme cold day) is particularly important for separating many different vegetation types. These findings highlight the need for a more explicit representation of the impacts of climate extremes on vegetation in DGVMs 
650 4 |a Journal Article 
650 4 |a DGVMs 
650 4 |a climate extremes 
650 4 |a climate thresholds 
650 4 |a decision trees 
650 4 |a machine learning 
650 4 |a vegetation distribution 
700 1 |a Tang, Hui  |e verfasserin  |4 aut 
700 1 |a Bryn, Anders  |e verfasserin  |4 aut 
700 1 |a Skarpaas, Olav  |e verfasserin  |4 aut 
700 1 |a Stordal, Frode  |e verfasserin  |4 aut 
700 1 |a Bjerke, Jarle W  |e verfasserin  |4 aut 
700 1 |a Žliobaitė, Indrė  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 11 vom: 24. Juni, Seite 3557-3579  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:11  |g day:24  |g month:06  |g pages:3557-3579 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16110  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 11  |b 24  |c 06  |h 3557-3579