Towards optimal boundary integral formulations of the Poisson-Boltzmann equation for molecular electrostatics

© 2022 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 10 vom: 15. Apr., Seite 674-691
1. Verfasser: Search, Stefan D (VerfasserIn)
Weitere Verfasser: Cooper, Christopher D, Van't Wout, Elwin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Poisson-Boltzmann boundary element method electrostatics implicit solvent model preconditioning Solvents
LEADER 01000naa a22002652 4500
001 NLM337332428
003 DE-627
005 20231225234156.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26825  |2 doi 
028 5 2 |a pubmed24n1124.xml 
035 |a (DE-627)NLM337332428 
035 |a (NLM)35201634 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Search, Stefan D  |e verfasserin  |4 aut 
245 1 0 |a Towards optimal boundary integral formulations of the Poisson-Boltzmann equation for molecular electrostatics 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.05.2022 
500 |a Date Revised 06.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a The Poisson-Boltzmann equation offers an efficient way to study electrostatics in molecular settings. Its numerical solution with the boundary element method is widely used, as the complicated molecular surface is accurately represented by the mesh, and the point charges are accounted for explicitly. In fact, there are several well-known boundary integral formulations available in the literature. This work presents a generalized expression of the boundary integral representation of the implicit solvent model, giving rise to new forms to compute the electrostatic potential. Moreover, it proposes a strategy to build efficient preconditioners for any of the resulting systems, improving the convergence of the linear solver. We perform systematic benchmarking of a set of formulations and preconditioners, focusing on the time to solution, matrix conditioning, and eigenvalue spectrum. We see that the eigenvalue clustering is a good indicator of the matrix conditioning, and show that they can be easily manipulated by scaling the preconditioner. Our results suggest that the optimal choice is problem-size dependent, where a simpler direct formulation is the fastest for small molecules, but more involved second-kind equations are better for larger problems. We also present a fast Calderón preconditioner for first-kind formulations, which shows promising behavior for future analysis. This work sets the basis towards choosing the most convenient boundary integral formulation of the Poisson-Boltzmann equation for a given problem 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Poisson-Boltzmann 
650 4 |a boundary element method 
650 4 |a electrostatics 
650 4 |a implicit solvent model 
650 4 |a preconditioning 
650 7 |a Solvents  |2 NLM 
700 1 |a Cooper, Christopher D  |e verfasserin  |4 aut 
700 1 |a Van't Wout, Elwin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 10 vom: 15. Apr., Seite 674-691  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:10  |g day:15  |g month:04  |g pages:674-691 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26825  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 10  |b 15  |c 04  |h 674-691