Progressive Feature Learning for Facade Parsing With Occlusions

Existing deep models for facade parsing often fail in classifying pixels in heavily occluded regions of facade images due to the difficulty in feature representation of these pixels. In this paper, we solve facade parsing with occlusions by progressive feature learning. To this end, we locate the re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 23., Seite 2081-2093
1. Verfasser: Ma, Wenguang (VerfasserIn)
Weitere Verfasser: Xu, Shibiao, Ma, Wei, Zhang, Xiaopeng, Zha, Hongbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM337278881
003 DE-627
005 20231225234044.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3152004  |2 doi 
028 5 2 |a pubmed24n1124.xml 
035 |a (DE-627)NLM337278881 
035 |a (NLM)35196233 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Wenguang  |e verfasserin  |4 aut 
245 1 0 |a Progressive Feature Learning for Facade Parsing With Occlusions 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing deep models for facade parsing often fail in classifying pixels in heavily occluded regions of facade images due to the difficulty in feature representation of these pixels. In this paper, we solve facade parsing with occlusions by progressive feature learning. To this end, we locate the regions contaminated by occlusions via Bayesian uncertainty evaluation on categorizing each pixel in these regions. Then, guided by the uncertainty, we propose an occlusion-immune facade parsing architecture in which we progressively re-express the features of pixels in each contaminated region from easy to hard. Specifically, the outside pixels, which have reliable context from visible areas, are re-expressed at early stages; the inner pixels are processed at late stages when their surroundings have been decontaminated at the earlier stages. In addition, at each stage, instead of using regular square convolution kernels, we design a context enhancement module (CEM) with directional strip kernels, which can aggregate structural context to re-express facade pixels. Extensive experiments on popular facade datasets demonstrate that the proposed method achieves state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Xu, Shibiao  |e verfasserin  |4 aut 
700 1 |a Ma, Wei  |e verfasserin  |4 aut 
700 1 |a Zhang, Xiaopeng  |e verfasserin  |4 aut 
700 1 |a Zha, Hongbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 23., Seite 2081-2093  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:23  |g pages:2081-2093 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3152004  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 23  |h 2081-2093