Weakly Supervised RGB-D Salient Object Detection With Prediction Consistency Training and Active Scribble Boosting

RGB-D salient object detection (SOD) has attracted increasingly more attention as it shows more robust results in complex scenes compared with RGB SOD. However, state-of-the-art RGB-D SOD approaches heavily rely on a large amount of pixel-wise annotated data for training. Such densely labeled annota...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 23., Seite 2148-2161
1. Verfasser: Xu, Yunqiu (VerfasserIn)
Weitere Verfasser: Yu, Xin, Zhang, Jing, Zhu, Linchao, Wang, Dadong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM337278857
003 DE-627
005 20231225234044.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3151999  |2 doi 
028 5 2 |a pubmed24n1124.xml 
035 |a (DE-627)NLM337278857 
035 |a (NLM)35196231 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yunqiu  |e verfasserin  |4 aut 
245 1 0 |a Weakly Supervised RGB-D Salient Object Detection With Prediction Consistency Training and Active Scribble Boosting 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.03.2022 
500 |a Date Revised 11.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a RGB-D salient object detection (SOD) has attracted increasingly more attention as it shows more robust results in complex scenes compared with RGB SOD. However, state-of-the-art RGB-D SOD approaches heavily rely on a large amount of pixel-wise annotated data for training. Such densely labeled annotations are often labor-intensive and costly. To reduce the annotation burden, we investigate RGB-D SOD from a weakly supervised perspective. More specifically, we use annotator-friendly scribble annotations as supervision signals for model training. Since scribble annotations are much sparser compared to ground-truth masks, some critical object structure information might be neglected. To preserve such structure information, we explicitly exploit the complementary edge information from two modalities (i.e., RGB and depth). Specifically, we leverage the dual-modal edge guidance and introduce a new network architecture with a dual-edge detection module and a modality-aware feature fusion module. In order to use the useful information of unlabeled pixels, we introduce a prediction consistency training scheme by comparing the predictions of two networks optimized by different strategies. Moreover, we develop an active scribble boosting strategy to provide extra supervision signals with negligible annotation cost, leading to significant SOD performance improvement. Extensive experiments on seven benchmarks validate the superiority of our proposed method. Remarkably, the proposed method with scribble annotations achieves competitive performance in comparison to fully supervised state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Yu, Xin  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Zhu, Linchao  |e verfasserin  |4 aut 
700 1 |a Wang, Dadong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 23., Seite 2148-2161  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:23  |g pages:2148-2161 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3151999  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 23  |h 2148-2161