The Class II KNOX family members KNAT3 and KNAT7 redundantly participate in Arabidopsis seed coat mucilage biosynthesis
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 73(2022), 11 vom: 02. Juni, Seite 3477-3495 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't KNAT3 KNAT7 Columellae RG-I polysaccharide biosynthesis seed mucilage Arabidopsis Proteins Homeodomain Proteins mehr... |
Zusammenfassung: | © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds |
---|---|
Beschreibung: | Date Completed 06.06.2022 Date Revised 03.08.2022 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erac066 |