High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering

Incomplete multi-view clustering aims to exploit the information of multiple incomplete views to partition data into their clusters. Existing methods only utilize the pair-wise sample correlation and pair-wise view correlation to improve the clustering performance but neglect the high-order correlat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 19., Seite 2067-2080
1. Verfasser: Li, Zhenglai (VerfasserIn)
Weitere Verfasser: Tang, Chang, Zheng, Xiao, Liu, Xinwang, Zhang, Wei, Zhu, En
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM337206740
003 DE-627
005 20231225233900.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3147046  |2 doi 
028 5 2 |a pubmed24n1123.xml 
035 |a (DE-627)NLM337206740 
035 |a (NLM)35188891 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhenglai  |e verfasserin  |4 aut 
245 1 0 |a High-Order Correlation Preserved Incomplete Multi-View Subspace Clustering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Incomplete multi-view clustering aims to exploit the information of multiple incomplete views to partition data into their clusters. Existing methods only utilize the pair-wise sample correlation and pair-wise view correlation to improve the clustering performance but neglect the high-order correlation of samples and that of views. To address this issue, we propose a high-order correlation preserved incomplete multi-view subspace clustering (HCP-IMSC) method which effectively recovers the missing views of samples and the subspace structure of incomplete multi-view data. Specifically, multiple affinity matrices constructed from the incomplete multi-view data are treated as a third-order low rank tensor with a tensor factorization regularization which preserves the high-order view correlation and sample correlation. Then, a unified affinity matrix can be obtained by fusing the view-specific affinity matrices in a self-weighted manner. A hypergraph is further constructed from the unified affinity matrix to preserve the high-order geometrical structure of the data with incomplete views. Then, the samples with missing views are restricted to be reconstructed by their neighbor samples under the hypergraph-induced hyper-Laplacian regularization. Furthermore, the learning of view-specific affinity matrices as well as the unified one, tensor factorization, and hyper-Laplacian regularization are integrated into a unified optimization framework. An iterative algorithm is designed to solve the resultant model. Experimental results on various benchmark datasets indicate the superiority of the proposed method. The code is implemented by using MATLAB R2018a and MindSpore library: https://github.com/ChangTang/HCP-IMSC 
650 4 |a Journal Article 
700 1 |a Tang, Chang  |e verfasserin  |4 aut 
700 1 |a Zheng, Xiao  |e verfasserin  |4 aut 
700 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Zhu, En  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 19., Seite 2067-2080  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:19  |g pages:2067-2080 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3147046  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 19  |h 2067-2080