Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 73(2022), 11 vom: 02. Juni, Seite 3726-3742
Auteur principal: Liao, Hong-Sheng (Auteur)
Autres auteurs: Yang, Chien-Chih, Hsieh, Ming-Hsiun
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Arabidopsis thaliana Anthocyanin histone acetylation methyl jasmonate nitrogen deficiency sugar Anthocyanins Arabidopsis Proteins plus... Histones Sucrose 57-50-1 Hydrogen Peroxide BBX060AN9V HDA15 protein, Arabidopsis EC 3.5.1.98 Histone Deacetylases Nitrogen N762921K75
Description
Résumé:© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Anthocyanin accumulation is a hallmark response to nitrogen (N) deficiency in Arabidopsis. Although the regulation of anthocyanin biosynthesis has been extensively studied, the roles of chromatin modification in this process are largely unknown. In this study we show that anthocyanin accumulation induced by N deficiency is modulated by HISTONE DEACETYLASE15 (HDA15) in Arabidopsis seedlings. The hda15-1 T-DNA insertion mutant accumulated more anthocyanins than the wild-type when the N supply was limited, and this was caused by up-regulation of anthocyanin biosynthetic and regulatory genes in the mutant. The up-regulated genes also had increased levels of histone acetylation in the mutant. The accumulation of anthocyanins induced by sucrose and methyl jasmonate, but not that induced by H2O2 and phosphate starvation, was also greater in the hda15-1 mutant. While sucrose increased histone acetylation in the hda15-1 mutant in genes in a similar manner to that caused by N deficiency, methyl jasmonate only enhanced histone acetylation in the genes involved in anthocyanin biosynthesis. Our results suggest that different stresses act through distinct regulatory modules to activate anthocyanin biosynthesis, and that HDA15-mediated histone modification modulates the expression of anthocyanin biosynthetic and regulatory genes to avoid overaccumulation in response to N deficiency and other stresses
Description:Date Completed 06.06.2022
Date Revised 03.08.2022
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erac067