Spatial distribution and influencing factors of litter in urban areas based on machine learning - A case study of Beijing

Copyright © 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 142(2022) vom: 01. Apr., Seite 88-100
1. Verfasser: Xiong, Nina (VerfasserIn)
Weitere Verfasser: Yang, Xiuwen, Zhou, Fei, Wang, Jia, Yue, Depeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Anselin’s Local Moran I Influencing factor analysis Kernel Density Estimation Multi-source data Random forest model
LEADER 01000caa a22002652c 4500
001 NLM337124779
003 DE-627
005 20250303012822.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2022.01.039  |2 doi 
028 5 2 |a pubmed25n1123.xml 
035 |a (DE-627)NLM337124779 
035 |a (NLM)35180614 
035 |a (PII)S0956-053X(22)00048-4 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiong, Nina  |e verfasserin  |4 aut 
245 1 0 |a Spatial distribution and influencing factors of litter in urban areas based on machine learning - A case study of Beijing 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.03.2022 
500 |a Date Revised 14.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 Elsevier Ltd. All rights reserved. 
520 |a Littering in urban areas negatively affects their appearance, is harmful to the environment and increases pollution. It is a typical urban problem looming large upon Beijing and other megacities striving for liveability and harmony in economy, society and environment. This study analyzed the amount and spatial distribution of urban litter generation in Beijing based on the Kernel Density Estimation method and Anselin's Local Moran I method. We analyzed multiple factors affecting littering in urban areas based on the random forest machine learning method. The results show that the density distribution of litter presents a typical core edge diffusion spatial distribution pattern. High clusters of litter were found in most regions of Dongcheng District and central regions of Haidian District. We have verified that littering in urban areas is mostly affected by population, POIs (interest points), road networks, and the management of the city environment. Among these, permanent population, level of road cleaning, the presence of branch roads and commercial places are the four most important influencing factors. This study is of great significance to the prevention and treatment of littering in urban areas and can help city managers better address this problem 
650 4 |a Journal Article 
650 4 |a Anselin’s Local Moran I 
650 4 |a Influencing factor analysis 
650 4 |a Kernel Density Estimation 
650 4 |a Multi-source data 
650 4 |a Random forest model 
700 1 |a Yang, Xiuwen  |e verfasserin  |4 aut 
700 1 |a Zhou, Fei  |e verfasserin  |4 aut 
700 1 |a Wang, Jia  |e verfasserin  |4 aut 
700 1 |a Yue, Depeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 142(2022) vom: 01. Apr., Seite 88-100  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:142  |g year:2022  |g day:01  |g month:04  |g pages:88-100 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2022.01.039  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 142  |j 2022  |b 01  |c 04  |h 88-100