Cytology, transcriptomics, and mass spectrometry imaging reveal changes in late-maturation elm (Ulmus pumila) seeds

Copyright © 2022 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 271(2022) vom: 29. Apr., Seite 153639
1. Verfasser: Qi, Xiaohong (VerfasserIn)
Weitere Verfasser: Chen, Lulu, Hu, Zijian, Shen, Weiwei, Xu, Huimin, Ma, Lingyu, Wang, Guangchao, Jing, Yanping, Wang, Xiaodong, Zhang, Bolin, Lin, Jinxing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Mass spectrometry imaging RNA-seq Seed development Ulmus pumila L. X-ray microscopy
Beschreibung
Zusammenfassung:Copyright © 2022 Elsevier GmbH. All rights reserved.
During seed maturation, the seed deposits storage compounds (starches, oils, and proteins), synthesizes defense compounds, produces a seed coat, initiates embryo dormancy, and becomes desiccated. During the late-maturation stage, seed storage compound contents and compositions change dramatically. Although maturation has been extensively studied in model species and crops, it remains less well characterized in woody perennial plants. In this study, we conducted morphological and cytological observations, transcriptome profiling, and chemical constituent analysis of elm (Ulmus pumila L.) seeds during the late-maturation stage. Light and electron microscopy revealed that closely packed yet discrete lipid bodies frequently surrounded the densely stained protein bodies, and the protein bodies became irregular or even partially disintegrated at the end of seed development. RNA-seq detected substantial transcriptome changes during the late-maturation stage, and pathway enrichment analysis showed that the differentially expressed genes were associated with phenylpropanoid biosynthesis, starch and sucrose metabolism, plant-pathogen interactions, and hormone signal transduction. Furthermore, we used mass spectrometry imaging to detect the relative intensity and spatial distribution of fatty acids, phospholipids, and waxes in elm seeds. Our findings provide a framework for understanding the changes in cytological features and chemical composition during the final stage of elm seed development, and a detailed reference for seed development in woody plants
Beschreibung:Date Completed 25.03.2022
Date Revised 25.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2022.153639