Guide to tuning the chalcone molecular properties based on the push-pull effect energy scale created via the molecular tailoring approach

© 2022 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 43(2022), 9 vom: 05. Apr., Seite 631-643
Auteur principal: Afonin, Andrei V (Auteur)
Autres auteurs: Rusinska-Roszak, Danuta
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article chalcones conjugation energy molecular properties tuning molecular tailoring approach push-pull effect energy scale
Description
Résumé:© 2022 Wiley Periodicals LLC.
Using the molecular tailoring approach, a total energy scale for the push-pull effect in the range from -40 to 100 kcal/mol is created for the wide series of neutral, charged and doubly charged compounds on the chalcone platform. Taking into account similar energy scale for hydrogen bonds, the strength of the push-pull effect is ranked in the seven categories, ranging from negative (anti-push-pull) to very weak and very strong push-pull effect. It is demonstrated that the molecular properties of chalcone can be tuned prior synthesis due to the created energy scale for the push-pull effect. The single bonds of the π-spacer in the chalcones are shortened, the double ones are lengthened, and the C=O bond vibrations are red shifted when the push-pull effect is enhanced along the energy scale. The HOMO and LUMO energies change systematically while the HOMO-LUMO energy gap narrows as the strength of the push-pull effect increases
Description:Date Revised 25.02.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.26827