A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 16 vom: 06. Apr., Seite e2200048
1. Verfasser: Gu, Lei (VerfasserIn)
Weitere Verfasser: Duan, Zhenyu, Chen, Xiaoting, Li, Xiaoling, Luo, Qiang, Bhamra, Apanpreet, Pan, Dayi, Zhu, Hongyan, Tian, Xiaohe, Chen, Rongjun, Gu, Zhongwei, Zhang, Hu, Qian, Zhiyong, Gong, Qiyong, Luo, Kui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cancer cellular homeostasis membrane flow polymer−dendron conjugates stealthy-to-sticky transition stimuli-responsive drug delivery systems tumor penetration and retention Anthracenes Dendrimers Polymers dendron
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), is presented, which allows a cathepsin-B-triggered stealthy-to-sticky structural transformation. The compositions and ratios are optimized through dissipative particle dynamics simulations. GFLG-DP displays tumor-specific transformation and the consequently released dendron-Ppa is found to effectively accumulate on the tumor cell membrane. The interaction between the dendron-Ppa and the tumor cell membrane results in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in the solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with the endoplasmic reticulum disrupts cell homeostasis, making tumor cells more vulnerable and susceptible to photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems
Beschreibung:Date Completed 22.04.2022
Date Revised 22.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202200048