Perceptually Unimportant Information Reduction and Cosine Similarity-Based Quality Assessment of 3D-Synthesized Images

Quality assessment of 3D-synthesized images has traditionally been based on detecting specific categories of distortions such as stretching, black-holes, blurring, etc. However, such approaches have limitations in accurately detecting distortions entirely in 3D synthesized images affecting their per...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 15., Seite 2027-2039
1. Verfasser: Sadbhawna (VerfasserIn)
Weitere Verfasser: Jakhetiya, Vinit, Chaudhary, Shubham, Subudhi, Badri Narayan, Lin, Weisi, Guntuku, Sharath Chandra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336994508
003 DE-627
005 20231225233416.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3147981  |2 doi 
028 5 2 |a pubmed24n1123.xml 
035 |a (DE-627)NLM336994508 
035 |a (NLM)35167450 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sadbhawna  |e verfasserin  |4 aut 
245 1 0 |a Perceptually Unimportant Information Reduction and Cosine Similarity-Based Quality Assessment of 3D-Synthesized Images 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.03.2022 
500 |a Date Revised 01.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Quality assessment of 3D-synthesized images has traditionally been based on detecting specific categories of distortions such as stretching, black-holes, blurring, etc. However, such approaches have limitations in accurately detecting distortions entirely in 3D synthesized images affecting their performance. This work proposes an algorithm to efficiently detect the distortions and subsequently evaluate the perceptual quality of 3D synthesized images. The process of generation of 3D synthesized images produces a few pixel shift between reference and 3D synthesized image, and hence they are not properly aligned with each other. To address this, we propose using morphological operation (opening) in the residual image to reduce perceptually unimportant information between the reference and the distorted 3D synthesized image. The residual image suppresses the perceptually unimportant information and highlights the geometric distortions which significantly affect the overall quality of 3D synthesized images. We utilized the information present in the residual image to quantify the perceptual quality measure and named this algorithm as Perceptually Unimportant Information Reduction (PU-IR) algorithm. At the same time, the residual image cannot capture the minor structural and geometric distortions due to the usage of erosion operation. To address this, we extract the perceptually important deep features from the pre-trained VGG-16 architectures on the Laplacian pyramid. The distortions in 3D synthesized images are present in patches, and the human visual system perceives even the small levels of these distortions. With this view, to compare these deep features between reference and distorted image, we propose using cosine similarity and named this algorithm as Deep Features extraction and comparison using Cosine Similarity (DF-CS) algorithm. The cosine similarity is based upon their similarity rather than computing the magnitude of the difference of deep features. Finally, the pooling is done to obtain the objective quality scores using simple multiplication to both PU-IR and DF-CS algorithms. Our source code is available online: https://github.com/sadbhawnathakur/3D-Image-Quality-Assessment 
650 4 |a Journal Article 
700 1 |a Jakhetiya, Vinit  |e verfasserin  |4 aut 
700 1 |a Chaudhary, Shubham  |e verfasserin  |4 aut 
700 1 |a Subudhi, Badri Narayan  |e verfasserin  |4 aut 
700 1 |a Lin, Weisi  |e verfasserin  |4 aut 
700 1 |a Guntuku, Sharath Chandra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 15., Seite 2027-2039  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:15  |g pages:2027-2039 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3147981  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 15  |h 2027-2039