Deep Gait Recognition : A Survey

Gait recognition is an appealing biometric modality which aims to identify individuals based on the way they walk. Deep learning has reshaped the research landscape in this area since 2015 through the ability to automatically learn discriminative representations. Gait recognition methods based on de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 15. Jan., Seite 264-284
1. Verfasser: Sepas-Moghaddam, Alireza (VerfasserIn)
Weitere Verfasser: Etemad, Ali
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Review Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM336994427
003 DE-627
005 20231225233416.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3151865  |2 doi 
028 5 2 |a pubmed24n1123.xml 
035 |a (DE-627)NLM336994427 
035 |a (NLM)35167443 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sepas-Moghaddam, Alireza  |e verfasserin  |4 aut 
245 1 0 |a Deep Gait Recognition  |b A Survey 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Gait recognition is an appealing biometric modality which aims to identify individuals based on the way they walk. Deep learning has reshaped the research landscape in this area since 2015 through the ability to automatically learn discriminative representations. Gait recognition methods based on deep learning now dominate the state-of-the-art in the field and have fostered real-world applications. In this paper, we present a comprehensive overview of breakthroughs and recent developments in gait recognition with deep learning, and cover broad topics including datasets, test protocols, state-of-the-art solutions, challenges, and future research directions. We first review the commonly used gait datasets along with the principles designed for evaluating them. We then propose a novel taxonomy made up of four separate dimensions namely body representation, temporal representation, feature representation, and neural architecture, to help characterize and organize the research landscape and literature in this area. Following our proposed taxonomy, a comprehensive survey of gait recognition methods using deep learning is presented with discussions on their performances, characteristics, advantages, and limitations. We conclude this survey with a discussion on current challenges and mention a number of promising directions for future research in gait recognition 
650 4 |a Review 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Etemad, Ali  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 15. Jan., Seite 264-284  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:15  |g month:01  |g pages:264-284 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3151865  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 15  |c 01  |h 264-284