DoTA : Unsupervised Detection of Traffic Anomaly in Driving Videos

Video anomaly detection (VAD) has been extensively studied for static cameras but is much more challenging in egocentric driving videos where the scenes are extremely dynamic. This paper proposes an unsupervised method for traffic VAD based on future object localization. The idea is to predict futur...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 01. Jan., Seite 444-459
1. Verfasser: Yao, Yu (VerfasserIn)
Weitere Verfasser: Wang, Xizi, Xu, Mingze, Pu, Zelin, Wang, Yuchen, Atkins, Ella, Crandall, David J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM336896808
003 DE-627
005 20231225233202.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3150763  |2 doi 
028 5 2 |a pubmed24n1122.xml 
035 |a (DE-627)NLM336896808 
035 |a (NLM)35157576 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yao, Yu  |e verfasserin  |4 aut 
245 1 0 |a DoTA  |b Unsupervised Detection of Traffic Anomaly in Driving Videos 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video anomaly detection (VAD) has been extensively studied for static cameras but is much more challenging in egocentric driving videos where the scenes are extremely dynamic. This paper proposes an unsupervised method for traffic VAD based on future object localization. The idea is to predict future locations of traffic participants over a short horizon, and then monitor the accuracy and consistency of these predictions as evidence of an anomaly. Inconsistent predictions tend to indicate an anomaly has occurred or is about to occur. To evaluate our method, we introduce a new large-scale benchmark dataset called Detection of Traffic Anomaly (DoTA)containing 4,677 videos with temporal, spatial, and categorical annotations. We also propose a new VAD evaluation metric, called spatial-temporal area under curve (STAUC), and show that it captures how well a model detects both temporal and spatial locations of anomalies unlike existing metrics that focus only on temporal localization. Experimental results show our method outperforms state-of-the-art methods on DoTA in terms of both metrics. We offer rich categorical annotations in DoTA to benchmark video action detection and online action detection methods. The DoTA dataset has been made available at: https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly 
650 4 |a Journal Article 
700 1 |a Wang, Xizi  |e verfasserin  |4 aut 
700 1 |a Xu, Mingze  |e verfasserin  |4 aut 
700 1 |a Pu, Zelin  |e verfasserin  |4 aut 
700 1 |a Wang, Yuchen  |e verfasserin  |4 aut 
700 1 |a Atkins, Ella  |e verfasserin  |4 aut 
700 1 |a Crandall, David J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 01. Jan., Seite 444-459  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:01  |g month:01  |g pages:444-459 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3150763  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 01  |c 01  |h 444-459