Temporal deep learning architecture for prediction of COVID-19 cases in India

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 195(2022) vom: 01. Juni, Seite 116611
1. Verfasser: Verma, Hanuman (VerfasserIn)
Weitere Verfasser: Mandal, Saurav, Gupta, Akshansh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article CNN COVID-19 Deep learning LSTM
LEADER 01000caa a22002652 4500
001 NLM336855087
003 DE-627
005 20240909232115.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.116611  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM336855087 
035 |a (NLM)35153389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Verma, Hanuman  |e verfasserin  |4 aut 
245 1 0 |a Temporal deep learning architecture for prediction of COVID-19 cases in India 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a To combat the recent coronavirus disease 2019 (COVID-19), academician and clinician are in search of new approaches to predict the COVID-19 outbreak dynamic trends that may slow down or stop the pandemic. Epidemiological models like Susceptible-Infected-Recovered (SIR) and its variants are helpful to understand the dynamics trend of pandemic that may be used in decision making to optimize possible controls from the infectious disease. But these epidemiological models based on mathematical assumptions may not predict the real pandemic situation. Recently the new machine learning approaches are being used to understand the dynamic trend of COVID-19 spread. In this paper, we designed the recurrent and convolutional neural network models: vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid CNN+LSTM model to capture the complex trend of COVID-19 outbreak and perform the forecasting of COVID-19 daily confirmed cases of 7, 14, 21 days for India and its four most affected states (Maharashtra, Kerala, Karnataka, and Tamil Nadu). The root mean square error (RMSE) and mean absolute percentage error (MAPE) evaluation metric are computed on the testing data to demonstrate the relative performance of these models. The results show that the stacked LSTM and hybrid CNN+LSTM models perform best relative to other models 
650 4 |a Journal Article 
650 4 |a CNN 
650 4 |a COVID-19 
650 4 |a Deep learning 
650 4 |a LSTM 
700 1 |a Mandal, Saurav  |e verfasserin  |4 aut 
700 1 |a Gupta, Akshansh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 195(2022) vom: 01. Juni, Seite 116611  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:195  |g year:2022  |g day:01  |g month:06  |g pages:116611 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.116611  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 195  |j 2022  |b 01  |c 06  |h 116611