Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion Storage

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 15 vom: 16. Apr., Seite e2108682
1. Verfasser: Sun, Boya (VerfasserIn)
Weitere Verfasser: Lu, Qiongqiong, Chen, Kaixuan, Zheng, Wenhao, Liao, Zhongquan, Lopatik, Nikolaj, Li, Dongqi, Hantusch, Martin, Zhou, Shengqiang, Wang, Hai I, Sofer, Zdeněk, Brunner, Eike, Zschech, Ehrenfried, Bonn, Mischa, Dronskowski, Richard, Mikhailova, Daria, Liu, Qinglei, Zhang, Di, Yu, Minghao, Feng, Xinliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MXenes hybrid-ion capacitors redox-active terminals sodium-ion storage
LEADER 01000naa a22002652 4500
001 NLM336806124
003 DE-627
005 20231225232958.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202108682  |2 doi 
028 5 2 |a pubmed24n1122.xml 
035 |a (DE-627)NLM336806124 
035 |a (NLM)35148441 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Boya  |e verfasserin  |4 aut 
245 1 0 |a Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion Storage 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a 2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus-oxygen terminals can be an attractive strategy for Nb4 C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2 - display a metaphosphate-like configuration with each P atom sustaining three PO bonds and one PO dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4 C3 (denoted PO2 -Nb4 C3 ) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+ -diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4 C3 , PO2 -Nb4 C3 exhibits a doubled Na+ -storage capacity (221.0 mAh g-1 ), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy-power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy-power tradeoff typical for energy-storage devices 
650 4 |a Journal Article 
650 4 |a MXenes 
650 4 |a hybrid-ion capacitors 
650 4 |a redox-active terminals 
650 4 |a sodium-ion storage 
700 1 |a Lu, Qiongqiong  |e verfasserin  |4 aut 
700 1 |a Chen, Kaixuan  |e verfasserin  |4 aut 
700 1 |a Zheng, Wenhao  |e verfasserin  |4 aut 
700 1 |a Liao, Zhongquan  |e verfasserin  |4 aut 
700 1 |a Lopatik, Nikolaj  |e verfasserin  |4 aut 
700 1 |a Li, Dongqi  |e verfasserin  |4 aut 
700 1 |a Hantusch, Martin  |e verfasserin  |4 aut 
700 1 |a Zhou, Shengqiang  |e verfasserin  |4 aut 
700 1 |a Wang, Hai I  |e verfasserin  |4 aut 
700 1 |a Sofer, Zdeněk  |e verfasserin  |4 aut 
700 1 |a Brunner, Eike  |e verfasserin  |4 aut 
700 1 |a Zschech, Ehrenfried  |e verfasserin  |4 aut 
700 1 |a Bonn, Mischa  |e verfasserin  |4 aut 
700 1 |a Dronskowski, Richard  |e verfasserin  |4 aut 
700 1 |a Mikhailova, Daria  |e verfasserin  |4 aut 
700 1 |a Liu, Qinglei  |e verfasserin  |4 aut 
700 1 |a Zhang, Di  |e verfasserin  |4 aut 
700 1 |a Yu, Minghao  |e verfasserin  |4 aut 
700 1 |a Feng, Xinliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 15 vom: 16. Apr., Seite e2108682  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:15  |g day:16  |g month:04  |g pages:e2108682 
856 4 0 |u http://dx.doi.org/10.1002/adma.202108682  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 15  |b 16  |c 04  |h e2108682