|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM336741987 |
003 |
DE-627 |
005 |
20231225232830.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202110337
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1122.xml
|
035 |
|
|
|a (DE-627)NLM336741987
|
035 |
|
|
|a (NLM)35141957
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yue, Xin-Yang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Unblocked Electron Channels Enable Efficient Contact Prelithiation for Lithium-Ion Batteries
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 14.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Contact prelithiation is strongly considered for compensating the initial capacity loss of lithium-ion batteries, exhibiting great potential for ultralong cycle life of working batteries and the application of large-scale energy-storage systems. However, the utilization of the sacrificial Li source for contact prelithiation is low (<65%). Herein the fundamental mechanism of contact prelithiation is described from the perspective of the Li source/anode interfaces by regulating the initial contact state, and a clear illustration of the pathogeny for capacity attenuation is successfully delivered. Specifically, creating plentiful electron channels is an access to making contact prelithiation with a higher Li utilization, as the mitigated local current density that reduces the etching of Li dissolution and SEI extension on electron channels. A vacuum thermal evaporation for depositing the Li film enables the contact interface to possess an adequate electron channel construction, rendering a Li utilization of 91.0%, and the dead Li yield is significantly reduced in a working battery
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Li utilization
|
650 |
|
4 |
|a contact prelithiation
|
650 |
|
4 |
|a electron channels
|
650 |
|
4 |
|a graphite anodes
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a solid electrolyte interphase (SEI)
|
700 |
1 |
|
|a Yao, Yu-Xing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Si-Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zeheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Chong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Qiang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 15 vom: 07. Apr., Seite e2110337
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:15
|g day:07
|g month:04
|g pages:e2110337
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202110337
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 15
|b 07
|c 04
|h e2110337
|